Powered by RND
PodcastsEnsinoOracle University Podcast

Oracle University Podcast

Oracle Corporation
Oracle University Podcast
Último episódio

Episódios Disponíveis

5 de 137
  • Cloud Data Centers: Core Concepts - Part 1
    Curious about what really goes on inside a cloud data center?   In this episode, Lois Houston and Nikita Abraham chat with Principal OCI Instructor Orlando Gentil about how cloud data centers are transforming the way organizations manage technology.   They explore the differences between traditional and cloud data centers, the roles of CPUs, GPUs, and RAM, and why operating systems and remote access matter more than ever.   Cloud Tech Jumpstart: https://mylearn.oracle.com/ou/course/cloud-tech-jumpstart/152992   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:25 Lois: Hello and welcome to the Oracle University Podcast! I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services.   Nikita: Hi everyone! Today, we’re covering the fundamentals you need to be successful in a cloud environment. If you’re new to cloud, coming from a SaaS environment, or planning to move from on-premises to the cloud, you won’t want to miss this. With us today is Orlando Gentil, Principal OCI Instructor at Oracle University. Hi Orlando! Thanks for joining us.   01:01 Lois: So Orlando, we know that Oracle has been a pioneer of cloud technologies and has been pivotal in shaping modern cloud data centers, which are different from traditional data centers. For our listeners who might be new to this, could you tell us what a traditional data center is?  Orlando: A traditional data center is a physical facility that houses an organization's mission critical IT infrastructure, including servers, storage systems, and networking equipment, all managed on site.   01:32 Nikita: So why would anyone want to use a cloud data center?  Orlando: The traditional model requires significant upfront investment in physical hardware, which you are then responsible for maintaining along with the underlying infrastructure like physical security, HVAC, backup power, and communication links.  In contrast, cloud data centers offer a more agile approach. You essentially rent the infrastructure you need, paying only for what you use. In the traditional data center, scaling resources up and down can be a slow and complex process.  On cloud data centers, scaling is automated and elastic, allowing resources to adjust dynamically based on demand. This shift allows business to move their focus from the constant upkeep of infrastructure to innovation and growth.  The move represents a shift from maintenance to momentum, enabling optimized costs and efficient scaling. This fundamental shift is how IT infrastructure is managed and consumed, and precisely what we mean by moving to the cloud.  02:39 Lois: So, when we talk about moving to the cloud, what does it really mean for businesses today?  Orlando: Moving to the cloud represents the strategic transition from managing your own on-premise hardware and software to leveraging internet-based computing services provided by a third-party.  This involves migrating your applications, data, and IT operations to a cloud environment. This transition typically aims to reduce operational overhead, increase flexibility, and enhance scalability, allowing organizations to focus more on their core business functions.    03:17 Nikita: Orlando, what’s the “brain” behind all this technology?  Orlando: A CPU or Central Processing Unit is the primary component that performs most of the processing inside the computer or server. It performs calculations handling the complex mathematics and logic that drive all applications and software.  It processes instructions, running tasks, and operations in the background that are essential for any application. A CPU is critical for performance, as it directly impacts the overall speed and efficiency of the data center.  It also manages system activities, coordinating user input, various application tasks, and the flow of data throughout the system. Ultimately, the CPU drives data center workloads from basic server operations to powering cutting edge AI applications.  04:10 Lois: To better understand how a CPU achieves these functions and processes information so efficiently, I think it’s important for us to grasp its fundamental architecture. Can you briefly explain the fundamental architecture of a CPU, Orlando?  Orlando: When discussing CPUs, you will often hear about sockets, cores, and threads. A socket refers to the physical connection on the motherboard where a CPU chip is installed.  A single server motherboard can have one or more sockets, each holding a CPU. A core is an independent processing unit within a CPU. Modern CPUs often have multiple cores, enabling them to handle several instructions simultaneously, thus increasing processing power.  Think of it as having multiple mini CPUs on a single chip. Threads are virtual components that allow a single CPU core to handle multiple sequence of instructions or threads concurrently. This technology, often called hyperthreading, makes a single core appear as two logical processors to the operating system, further enhancing efficiency.  05:27 Lois: Ok. And how do CPUs process commands?  Orlando: Beyond these internal components, CPUs are also designed based on different instruction set architectures which dictate how they process commands.   CPU architectures are primarily categorized in two designs-- Complex Instruction Set Computer or CISC and Reduced Instruction Set Computer or RISC. CISC processors are designed to execute complex instructions in a single step, which can reduce the number of instructions needed for a task, but often leads to a higher power consumption.  These are commonly found in traditional Intel and AMD CPUs. In contrast, RISC processors use a simpler, more streamlined set of instructions. While this might require more steps for a complex task, each step is faster and more energy efficient. This architecture is prevalent in ARM-based CPUs.  06:34 Are you looking to boost your expertise in enterprise AI? Check out the Oracle AI Agent Studio for Fusion Applications Developers course and professional certification—now available through Oracle University. This course helps you build, customize, and deploy AI Agents for Fusion HCM, SCM, and CX, with hands-on labs and real-world case studies. Ready to set yourself apart with in-demand skills and a professional credential? Learn more and get started today! Visit mylearn.oracle.com for more details.     07:09 Nikita: Welcome back! We were discussing CISC and RISC processors. So Orlando, where are they typically deployed? Are there any specific computing environments and use cases where they excel?  Orlando: On the CISC side, you will find them powering enterprise virtualization and server workloads, such as bare metal hypervisors in large databases where complex instructions can be efficiently processed. High performance computing that includes demanding simulations, intricate analysis, and many traditional machine learning systems.  Enterprise software suites and business applications like ERP, CRM, and other complex enterprise systems that benefit from fewer steps per instruction. Conversely, RISC architectures are often preferred for cloud-native workloads such as Kubernetes clusters, where simpler, faster instructions and energy efficiency are paramount for distributed computing.  Mobile device management and edge computing, including cell phones and IoT devices where power efficiency and compact design are critical. Cost optimized cloud hosting supporting distributed workloads where the cumulative energy savings and simpler design lead to more economical operations.  The choice between CISC and RISC depends heavily on the specific workload and performance requirements. While CPUs are versatile generalists, handling a broad range of tasks, modern data centers also heavily rely on another crucial processing unit for specialized workloads.  08:54 Lois: We’ve spoken a lot about CPUs, but our conversation would be incomplete without understanding what a Graphics Processing Unit is and why it’s important. What can you tell us about GPUs, Orlando?  Orlando: A GPU or Graphics Processing Unit is distinct from a CPU. While the CPU is a generalist excelling at sequential processing and managing a wide variety of tasks, the GPU is a specialist.  It is designed specifically for parallel compute heavy tasks. This means it can perform many calculations simultaneously, making it incredibly efficient for workloads like rendering graphics, scientific simulations, and especially in areas like machine learning and artificial intelligence, where massive parallel computation is required.  In the modern data center, GPUs are increasingly vital for accelerating these specialized, data intensive workloads.   09:58 Nikita: Besides the CPU and GPU, there’s another key component that collaborates with these processors to facilitate efficient data access. What role does Random Access Memory play in all of this?  Orlando: The core function of RAM is to provide faster access to information in use. Imagine your computer or server needing to retrieve data from a long-term storage device, like a hard drive. This process can be relatively slow.  RAM acts as a temporary high-speed buffer. When your CPU or GPU needs data, it first checks RAM. If the data is there, it can be accessed almost instantaneously, significantly speeding up operations.  This rapid access to frequently used data and programming instructions is what allows applications to run smoothly and systems to respond quickly, making RAM a critical factor in overall data center performance.  While RAM provides quick access to active data, it's volatile, meaning data is lost when power is off, or persistent data storage, the information that needs to remain available even after a system shut down.   11:14 Nikita: Let’s now talk about operating systems in cloud data centers and how they help everything run smoothly. Orlando, can you give us a quick refresher on what an operating system is, and why it is important for computing devices?  Orlando: At its core, an operating system, or OS, is the fundamental software that manages all the hardware and software resources on a computer. Think of it as a central nervous system that allows everything else to function.  It performs several critical tasks, including managing memory, deciding which programs get access to memory and when, managing processes, allocating CPU time to different tasks and applications, managing files, organizing data on storage devices, handling input and output, facilitate communication between the computer and its peripherals, like keyboards, mice, and displays. And perhaps, most importantly, it provides the user interface that allows us to interact with the computer.  12:19 Lois: Can you give us a few examples of common operating systems?  Orlando: Common operating system examples you are likely familiar with include Microsoft Windows and MacOS for personal computers, iOS and Android for mobile devices, and various distributions of Linux, which are incredibly prevalent in servers and increasingly in cloud environments.  12:41 Lois: And how are these operating systems specifically utilized within the demanding environment of cloud data centers?  Orlando: The two dominant operating systems in data centers are Linux and Windows. Linux is further categorized into enterprise distributions, such as Oracle Linux or SUSE Linux Enterprise Server, which offer commercial support and stability, and community distributions, like Ubuntu and CentOS, which are developed and maintained by communities and are often free to use.  On the other side, we have Windows, primarily represented by Windows Server, which is Microsoft's server operating system known for its robust features and integration with other Microsoft products. While both Linux and Windows are powerful operating systems, their licensing modes can differ significantly, which is a crucial factor to consider when deploying them in a data center environment.  13:43 Nikita: In what way do the licensing models differ?  Orlando: When we talk about licensing, the differences between Linux and Windows become quite apparent. For Linux, Enterprise Distributions come with associated support fees, which can be bundled into the initial cost or priced separately. These fees provide access to professional support and updates. On the other hand, Community Distributions are typically free of charge, with some providers offering basic community-driven support.  Windows server, in contrast, is a commercial product. Its license cost is generally included in the instance cost when using cloud providers or purchased directly for on-premise deployments. It's also worth noting that some cloud providers offer a bring your own license, or BYOL program, allowing organizations to use their existing Windows licenses in the cloud, which can sometimes provide cost efficiencies.  14:46 Nikita: Beyond choosing an operating system, are there any other important aspects of data center management?  Orlando: Another critical aspect of data center management is how you remotely access and interact with your servers. Remote access is fundamental for managing servers in a data center, as you are rarely physically sitting in front of them. The two primary methods that we use are SSH, or secure shell, and RDP, remote desktop.  Secure shell is widely used for secure command line access for Linux servers. It provides an encrypted connection, allowing you to execute commands, transfer files, and manage your servers securely from a remote location. The remote desktop protocol is predominantly used for graphical remote access to Windows servers. RDP allows you to see and interact with the server's desktop interface, just as if you were sitting directly in front of it, making it ideal for tasks that require a graphical user interface.  15:54 Lois: Thank you so much, Orlando, for shedding light on this topic.    Nikita: Yeah, that's a wrap for today! To learn more about what we discussed, head over to mylearn.oracle.com and search for the Cloud Tech Jumpstart course. In our next episode, we’ll take a close look at how data is stored and managed. Until then, this is Nikita Abraham…   Lois: And Lois Houston, signing off!   16:16 That’s all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We’d also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    16:45
  • AI Across Industries and the Importance of Responsible AI
    AI is reshaping industries at a rapid pace, but as its influence grows, so do the ethical concerns that come with it.   This episode examines how AI is being applied across sectors such as healthcare, finance, and retail, while also exploring the crucial issue of ensuring that these technologies align with human values.   In this conversation, Lois Houston and Nikita Abraham are joined by Hemant Gahankari, Senior Principal OCI Instructor, who emphasizes the importance of fairness, inclusivity, transparency, and accountability in AI systems.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode.   ---------------------------------------------------- Episode Transcript:   00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:25 Lois: Welcome to the Oracle University Podcast! I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services. Nikita: Hey everyone! In our last episode, we spoke about how Oracle integrates AI capabilities into its Fusion Applications to enhance business workflows, and we focused on Predictive, Generative, and Agentic AI. Lois: Today, we’ll discuss the various applications of AI. This is the final episode in our AI series, and before we close, we’ll also touch upon ethical and responsible AI.  01:01 Nikita: Taking us through all of this is Senior Principal OCI Instructor Hemant Gahankari. Hi Hemant! AI is pretty much everywhere today. So, can you explain how it is being used in industries like retail, hospitality, health care, and so on?  Hemant: AI isn't just for sci-fi movies anymore. It's helping doctors spot diseases earlier and even discover new drugs faster. Imagine an AI that can look at an X-ray and say, hey, there is something sketchy here before a human even notices. Wild, right? Banks and fintech companies are all over AI. Fraud detection. AI has got it covered. Those robo advisors managing your investments? That's AI too. Ever noticed how e-commerce companies always seem to know what you want? That's AI studying your habits and nudging you towards that next purchase or binge watch. Factories are getting smarter. AI predicts when machines will fail so they can fix them before everything grinds to a halt. Less downtime, more efficiency. Everyone wins. Farming has gone high tech. Drones and AI analyze crops, optimize water use, and even help with harvesting. Self-driving cars get all the hype, but even your everyday GPS uses AI to dodge traffic jams. And if AI can save me from sitting in bumper-to-bumper traffic, I'm all for it. 02:40 Nikita: Agreed! Thanks for that overview, but let’s get into specific scenarios within each industry.  Hemant: Let us take a scenario in the retail industry-- a retail clothing line with dozens of brick-and-mortar stores. Maintaining proper inventory levels in stores and regional warehouses is critical for retailers. In this low-margin business, being out of a popular product is especially challenging during sales and promotions. Managers want to delight shoppers and increase sales but without overbuying. That's where AI steps in. The retailer has multiple information sources, ranging from point-of-sale terminals to warehouse inventory systems. This data can be used to train a forecasting model that can make predictions, such as demand increase due to a holiday or planned marketing promotion, and determine the time required to acquire and distribute the extra inventory. Most ERP-based forecasting systems can produce sophisticated reports. A generative AI report writer goes further, creating custom plain-language summaries of these reports tailored for each store, instructing managers about how to maximize sales of well-stocked items while mitigating possible shortages. 04:11 Lois: Ok. How is AI being used in the hospitality sector, Hemant? Hemant: Let us take an example of a hotel chain that depends on positive ratings on social media and review websites. One common challenge they face is keeping track of online reviews, leading to missed opportunities to engage unhappy customers complaining on social media. Hotel managers don't know what's being said fast enough to address problems in real-time. Here, AI can be used to create a large data set from the tens of thousands of previously published online reviews. A textual language AI system can perform a sentiment analysis across the data to determine a baseline that can be periodically re-evaluated to spot trends. Data scientists could also build a model that correlates these textual messages and their sentiments against specific hotel locations and other factors, such as weather. Generative AI can extract valuable suggestions and insights from both positive and negative comments. 05:27 Nikita: That’s great. And what about Financial Services? I know banks use AI quite often to detect fraud. Hemant: Unfortunately, fraud can creep into any part of a bank's retail operations. Fraud can happen with online transactions, from a phone or browser, and offsite ATMs too. Without trust, banks won't have customers or shareholders. Excessive fraud and delays in detecting it can violate financial industry regulations. Fraud detection combines AI technologies, such as computer vision to interpret scanned documents, document verification to authenticate IDs like driver's licenses, and machine learning to analyze patterns. These tools work together to assess the risk of fraud in each transaction within seconds. When the system detects a high risk, it triggers automated responses, such as placing holds on withdrawals or requesting additional identification from customers, to prevent fraudulent activity and protect both the business and its client. 06:42 Nikita: Wow, interesting. And how is AI being used in the health industry, especially when it comes to improving patient care? Hemant: Medical appointments can be frustrating for everyone involved—patients, receptionists, nurses, and physicians. There are many time-consuming steps, including scheduling, checking in, interactions with the doctors, checking out, and follow-ups. AI can fix this problem through electronic health records to analyze lab results, paper forms, scans, and structured data, summarizing insights for doctors with the latest research and patient history. This helps practice reduced costs, boost earnings, and deliver faster, more personalized care. 07:32 Lois: Let’s take a look at one more industry. How is manufacturing using AI? Hemant: A factory that makes metal parts and other products use both visual inspections and electronic means to monitor product quality. A part that fails to meet the requirements may be reworked or repurposed, or it may need to be scrapped. The factory seeks to maximize profits and throughput by shipping as much good material as possible, while minimizing waste by detecting and handling defects early. The way AI can help here is with the quality assurance process, which creates X-ray images. This data can be interpreted by computer vision, which can learn to identify cracks and other weak spots, after being trained on a large data set. In addition, problematic or ambiguous data can be highlighted for human inspectors. 08:36 Oracle University’s Race to Certification 2025 is your ticket to free training and certification in today’s hottest tech. Whether you’re starting with Artificial Intelligence, Oracle Cloud Infrastructure, Multicloud, or Oracle Data Platform, this challenge covers it all! Learn more about your chance to win prizes and see your name on the Leaderboard by visiting education.oracle.com/race-to-certification-2025. That’s education.oracle.com/race-to-certification-2025. 09:20 Nikita: Welcome back! AI can be used effectively to automate a variety of tasks to improve productivity, efficiency, cost savings. But I’m sure AI has its constraints too, right? Can you talk about what happens if AI isn’t able to echo human ethics?  Hemant: AI can fail due to lack of ethics.  AI can spot patterns, not make moral calls. It doesn't feel guilt, understand context, or take responsibility. That is still up to us.  Decisions are only as good as the data behind them. For example, health care AI underdiagnosing women because research data was mostly male. Artificial narrow intelligence tends to automate discrimination at scale. Recruiting AI downgraded resumes just because it had a word "women's" (for example, women's chess club). Who is responsible when AI fails? For example, if a self-driving car hits someone, we cannot blame the car. Then who owns the failure? The programmer? The CEO? Can we really trust corporations or governments having programmed the use of AI not to be evil correctly? So, it's clear that AI needs oversight to function smoothly. 10:48 Lois: So, Hemant, how can we design AI in ways that respect and reflect human values? Hemant: Think of ethics like a tree. It needs all parts working together. Roots represent intent. That is our values and principles. The trunk stands for safeguards, our systems, and structures. And the branches are the outcomes we aim for. If the roots are shallow, the tree falls. If the trunk is weak, damage seeps through. The health of roots and trunk shapes the strength of our ethical outcomes. Fairness means nothing without ethical intent behind it. For example, a bank promotes its loan algorithm as fair. But it uses zip codes in decision-making, effectively penalizing people based on race. That's not fairness. That's harm disguised as data. Inclusivity depends on the intent sustainability. Inclusive design isn't just a check box. It needs a long-term commitment. For example, controllers for gamers with disabilities are only possible because of sustained R&D and intentional design choices. Without investment in inclusion, accessibility is left behind. Transparency depends on the safeguard robustness. Transparency is only useful if the system is secure and resilient. For example, a medical AI may be explainable, but if it is vulnerable to hacking, transparency won't matter. Accountability depends on the safeguard privacy and traceability. You can't hold people accountable if there is no trail to follow. For example, after a fatal self-driving car crash, deleted system logs meant no one could be held responsible. Without auditability, accountability collapses. So remember, outcomes are what we see, but they rely on intent to guide priorities and safeguards to support execution. That's why humans must have a final say. AI has no grasp of ethics, but we do. 13:16 Nikita: So, what you’re saying is ethical intent and robust AI safeguards need to go hand in hand if we are to truly leverage AI we can trust. Hemant: When it comes to AI, preventing harm is a must. Take self-driving cars, for example. Keeping pedestrians safe is absolutely critical, which means the technology has to be rock solid and reliable. At the same time, fairness and inclusivity can't be overlooked. If an AI system used for hiring learns from biased past data, say, mostly male candidates being hired, it can end up repeating those biases, shutting out qualified candidates unfairly. Transparency and accountability go hand in hand. Imagine a loan rejection if the AI's decision isn't clear or explainable. It becomes impossible for someone to challenge or understand why they were turned down. And of course, robustness supports fairness too. Loan approval systems need strong security to prevent attacks that could manipulate decisions and undermine trust.  We must build AI that reflects human values and has safeguards. This makes sure that AI is fair, inclusive, transparent, and accountable.  14:44 Lois: Before we wrap, can you talk about why AI can fail? Let’s continue with your analogy of the tree. Can you explain how AI failures occur and how we can address them? Hemant: Root elements like do not harm and sustainability are fundamental to ethical AI development. When these roots fail, the consequences can be serious. For example, a clear failure of do not harm is AI-powered surveillance tools misused by authoritarian regimes. This happens because there were no ethical constraints guiding how the technology was deployed. The solution is clear-- implement strong ethical use policies and conduct human rights impact assessment to prevent such misuse. On the sustainability front, training AI models can consume massive amount of energy. This failure occurs because environmental costs are not considered. To fix this, organizations are adopting carbon-aware computing practices to minimize AI's environmental footprint. By addressing these root failures, we can ensure AI is developed and used responsibly with respect for human rights and the planet. An example of a robustness failure can be a chatbot hallucinating nonexistent legal precedence used in court filings. This could be due to training on unverified internet data and no fact-checking layer. This can be fixed by grounding in authoritative databases. An example of a privacy failure can be AI facial recognition database created without user consent. The reason being no consent was taken for data collection. This can be fixed by adopting privacy-preserving techniques. An example of a fairness failure can be generated images of CEOs as white men and nurses as women, minorities. The reason being training on imbalanced internet images reflecting societal stereotypes. And the fix is to use diverse set of images. 17:18 Lois: I think this would be incomplete if we don’t talk about inclusivity, transparency, and accountability failures. How can they be addressed, Hemant? Hemant: An example of an inclusivity failure can be a voice assistant not understanding accents. The reason being training data lacked diversity. And the fix is to use inclusive data. An example of a transparency and accountability failure can be teachers could not challenge AI-generated performance scores due to opaque calculations. The reason being no explainability tools are used. The fix being high-impact AI needs human review pathways and explainability built in. 18:04 Lois: Thank you, Hemant, for a fantastic conversation. We got some great insights into responsible and ethical AI. Nikita: Thank you, Hemant! If you’re interested in learning more about the topics we discussed today, head over to mylearn.oracle.com and search for the AI for You course. Until next time, this is Nikita Abraham…. Lois: And Lois Houston, signing off! 18:26 That’s all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We’d also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.  
    --------  
    18:55
  • Oracle AI for Fusion Apps
    Want to make AI work for your business? In today’s episode, Lois Houston and Nikita Abraham continue their discussion of AI in Oracle Fusion Applications by focusing on three key AI capabilities: predictive, generative, and agentic.   Joining them is Principal Instructor Yunus Mohammed, who explains how predictive, generative, and agentic AI can optimize efficiency, support decision-making, and automate tasks—all without requiring technical expertise.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode.   ------------------------------------------------------------   Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:25 Nikita: Welcome to the Oracle University Podcast! I’m Nikita Abraham, Team Lead: Editorial Services with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi there! In our last episode, we explored the essential components of the Oracle AI stack and spoke about Oracle’s suite of AI services.  Nikita: Yeah, and in today’s episode, we’re going to go down a similar path and take a closer look at the AI functionalities within Oracle Fusion Applications. 00:53 Lois: With us today is Principal Instructor Yunus Mohammed. Hi Yunus! It’s lovely to have you back with us. For anyone who doesn’t already know, what are Oracle Fusion Cloud Applications?  Yunus: Oracle Fusion Applications are a suite of cloud-based enterprise applications designed to run for your business across finance, HR, supply chain, sales, services and more, all on a unified platform. They are designed to help enterprises operate smarter, faster by embedding AI directly into business process. That means better forecasts in finance, faster hiring decisions in HR, and optimized supply chains, and more personalized customer experience.  01:42 Nikita: And we know they’ve been built for today's fast-paced, AI-driven business environment. So, what are the different functional pillars within Oracle Fusion Apps? Yunus: The first one is the ERP, Enterprise Resource Planning, which supports financials, procurements, and project management. It's the backbone of many organizations, or day-to-day operations. HCM or Human Capital Management, handles workforce-related processes such as hiring, payroll, performance, and talent development, helping HR teams operate more efficiently. SCM, the Supply Chain Management, enables businesses to manage their logistics, inventory, and suppliers and manufacturers in the business. It's particularly critical in industries with complex operations like retail and manufacturing. The CX, which is the Customer Experience, covers the full customer life cycle, which includes sales, marketing, and service. These models help the businesses connect with their customers more personally and proactively, whether through the targeted campaigns or responsive support.  03:02 Lois: Yunus, what sets Fusion apart? Yunus: What sets Fusion apart is how these applications work seamlessly together. They share data natively and continuously improve with AI and automation, giving you not just tools, but intelligence at scale.  Oracle applications are built to be AI first, with a complete suite of finance, supply chain, manufacturing, HR, sales, service, and marketing, that is tightly coupled with our industry and data intelligence applications. The easiest and the most effective way to start building your organization’s AI muscle is with AI embedded in Fusion applications. For example, if the customer needs to return a defective product, the service representative simply clicks on Ask Oracle for the answers. Since the AI agent is embedded in the application, it has contextual information about the customer, the order, and any special service, contract, or any other feature that is required for this process. The AI agent automatically figures out the return policy, including the options to send a replacement product immediately or offer a discount for the inconvenience, and also expedite shipping. Another AI agent sends a personalized email confirming details of the return, and different AI agent creates the replacement order for fulfillment and shipping. Our AI-embedded Fusion Applications can automate an end-to-end business process from service request to return order to fulfillment and shipping and then accounting.  These are pre-built and tested so that all the worry and hard work is removed from the implementation point of view. They cover the core workflows. Basically, they address tasks that form part of the organization's core workflow. User requires no technical knowledge in the scenarios.  05:16 Lois: That’s great! So, you don’t need to be an AI expert or a data scientist to get going. Yunus: The outcomes are super fast in business softwares and context is everything. Just having the right information isn't enough. This is about having the information in the right place at the right time for it to be instantly actionable. They are ready from day one and can be optimized over time. They are powerful out of the box and only get better with day-to-day processes and performance. 05:55 Are you working towards an Oracle Certification this year? Join us at one of our certification prep live events in the Oracle University Learning Community. Get insider tips from seasoned experts and learn from others who have already taken their certifications. Go to community.oracle.com/ou to jump-start your journey towards certification today!  06:20 Nikita: Welcome back! So, when we talk about the AI capabilities in Fusion apps, I know we have different types. Can you tell us more about them?  Yunus: Predictive AI is where it all started. These models analyze historical patterns and data to anticipate what might happen next. For example, predicting employee attrition, forecasting demand in supply chain, or flagging potential late payments in finance workflows. These are embedded into business processes to surface insights before action is needed. Then we have got the generative AI, which takes this a step more further. Instead of just providing insights, it creates content, such as auto-generating job descriptions, summarizing performance reviews, or even crafting draft responses to supplier queries. This saves time and boosts productivity across functions like HR, CX, and procurement. Last but not the least, we have got the agentic AI, which is the most advanced layer. These agents don't just provide suggestions, they take actions on behalf of the users. Think of an agent that not only recommends actions in a workflow, but also executes them, creating tasks, filling tickets, updating systems, and communicating with stakeholders, all autonomously but under user control. And importantly, many business scenarios today benefit from a blend of these types. For example, an AI assistant in Fusion HCM might predict employees turnover, which is predictive AI, generates tailored retention plans, which is generative, and it is generative AI, and initiate outreach or next steps, which is done by the process of agents, which is called agentic AI. So, Oracle integrates these capabilities in a harmonious way, enabling users to act faster, personalize at scale, and drive better business outcomes.  08:39 Lois: Ok, let’s get into the specifics. How does Oracle use predictive AI across its Fusion apps, helping businesses anticipate what’s coming and act proactively.  Yunus: So in HCM, things like recommended jobs, in this, candidates visiting a potential employer’s website encountered an improved online experience, whereby if they have uploaded their resumes, they will be shown job opportunities that match their skills and experience mix. This helps candidates who are unsure what to search by showing them roles and titles they may not have considered. Time to hire provides an estimated as to how long it will take for an HR team to fill an open role, but this is really useful not only in terms of planning, recruitment, but also in terms of understanding whether you might need some temporary cover and for how long will it actually take the process to complete. In the process of supply chain management, the predictive AI is leveraged to revolutionize transit time and estimated time of arrival, which is called as the predictive analysis, enhancing efficiency, and optimizing operations. It can flag abnormal patterns in supply or inventory. For example, if a batch of parts is behaving differently in the production line and predict future demands, helping avoid overstocking or stockouts is a process that can be done by using the SCM predictive analysis or predictive AI. In ERPs, where you can audit your expenses, plan for future expenses, and do dynamic discounting for vendors who are likely to accept earlier payments or earlier payment discounts, it can also speed up reimbursements by automated expense entries. In CX, you have the options to go with adaptive intelligence for sales, which helps representatives prioritize the leads and the likelihood that a specific lead will close, helping representatives focus their time and effort. So predictive scheduling and routing in service delivery ensures that the right resource is assigned to the right customer at the right time, boosting operational efficiency and customer satisfaction, also known as fatigue analysis. 11:23 Lois: Now let’s shift our focus to generative AI. How does Oracle implement generative AI across HCM, ERP, Supply Chain, and CX? Yunus: So, in HCM, the generative AI can automatically generate performance review summaries from raw data, saving time for HR teams, and can help you in providing candidates with summaries of their interview process, feedback, and next steps, all auto generated. With AI assistance, goal creation for employees can be automated, and the system analyzes performance data and trends to propose meaningful and attainable goals, aligning them with organizational objectives and employee capabilities. In SCM, similarly, the generative AI process helps you in defining drafting summaries of purchase orders. So generative AI can automatically create clear, readable synopses, and can be summarized with complex negotiations and discussions, making it easier for supply chain managers to analyze supplier proposals, track negotiations, processes, and understand key takeaways. With predictive AI embedded, it is helping you to leverage to help generate the repairs of master definitions of summaries, and can generate descriptions for item based on their specification, helping product teams automatically generate catalog contents. With ERPs, you can automate the creation of business reports, offering more insights and actionable narratives, rather than just showing the raw data. The AI can provide context, interpretations, and recommendations. AI can also take raw project data and generate a comprehensive, easy-to-read project status, reports that stakeholders can quickly review. In CX, we have got service request summarization, which can provide these long summaries for the customer services and the tickets that have been requested by the customers, allowing support teams to understand the key points in the fraction of time, and can also create knowledge base articles directly from common service requests or inquiries, which not only improves internal knowledge management but also empowers customers by enabling self-service. So generative AI can automatically generate success stories or case studies from successful opportunities or sales, which can be used as marketing content or for internal knowledge sharing. 14:20 Nikita: And what about Oracle's Agentic AI? What are its capabilities across the different pillars? Yunus: In HCM, Agentic AI handles the end-to-end onboarding experience, from explaining policies to guiding document submissions, even booking orientation sessions, allowing the HR staff to focus on human engagement. It can further support HR teams during performance review cycles by surfacing high potential employees, pulling in performance data, and recommending next actions like promotions or learning paths. It helps manage time with requests by checking eligibility, policy constraints, and suggesting appropriate substitutes, reducing administrative frictions and errors. With SCM, the Agentic AI Fusion Applications act as a real time Assistant to ensure buyers follow procurement policies, and reducing compliance risk and manual errors. It can also support sales representatives with real-time insights and next best actions during the quoting or ordering process, improving customer satisfaction and sales performance. With ERP, you can handle document intake, extraction, and routing, saving significant time on manual document management across financial functions using Fusion Applications. AI automates reconciliation tasks by matching transactions, flagging anomalies, and suggesting resolutions. It helps you in reducing close cycle timelines and continuously analyzes profit margins. And it recommends the pricing adjustments that can be done in your ERPs. In CX, the Agentic AI Fusion Application supports staff by instantly compiling full customer histories, orders, service requests, interactions, and can act like a real-time assistant, summarizing open tickets and resolutions, helping agents take over or escalate without needing to dig through the notes, and dynamically adjust technicals and technician routes based on traffic, priority, or cancelation, increasing the field efficiency and customer satisfaction. 17:04 Lois: Thank you so much, Yunus. To learn more about the topics covered today, visit mylearn.oracle.com and search for the AI for You course. Nikita: Join us next week as we cover how AI is being applied across sectors like healthcare, finance, and retail, and tackle the big question: how do we keep these technologies aligned with human values? Until then, this is Nikita Abraham… Lois: And Lois Houston, signing off! 17:30 That’s all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We’d also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    18:00
  • Oracle's AI Ecosystem
    In this episode, Lois Houston and Nikita Abraham are joined by Principal Instructor Yunus Mohammed to explore Oracle’s approach to enterprise AI. The conversation covers the essential components of the Oracle AI stack and how each part, from the foundational infrastructure to business-specific applications, can be leveraged to support AI-driven initiatives.   They also delve into Oracle’s suite of AI services, including generative AI, language processing, and image recognition.     AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode.   -------------------------------------------------------------   Episode Transcript:  00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:25 Lois: Welcome to the Oracle University Podcast! I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services. Nikita: Hey everyone! In our last episode, we discussed why the decision to buy or build matters in the world of AI deployment. Lois: That’s right, Niki. Today is all about the Oracle AI stack and how it empowers not just developers and data scientists, but everyday business users as well. Then we’ll spend some time exploring Oracle AI services in detail.  01:00 Nikita: Yunus Mohammed, our Principal Instructor, is back with us today. Hi Yunus! Can you talk about the different layers in Oracle’s end-to-end AI approach? Yunus: The first base layer is the foundation of AI infrastructure, the powerful compute and storage layer that enables scalable model training and inferences. Sitting above the infrastructure, we have got the data platform. This is where data is stored, cleaned, and managed. Without a reliable data foundation, AI simply can't perform. So base of AI is the data, and the reliable data gives more support to the AI to perform its job. Then, we have AI and ML services. These provide ready-to-use tools for building, training, and deploying custom machine learning models. Next, to the AI/ML services, we have got generative AI services. This is where Oracle enables advanced language models and agentic AI tools that can generate content, summarize documents, or assist users through chat interfaces. Then, we have the top layer, which is called as the applications, things like Fusion applications or industry specific solutions where AI is embedded directly into business workflows for recommendations, forecasting or customer support. Finally, Oracle integrates with a growing ecosystem of AI partners, allowing organizations to extend and enhance their AI capabilities even further. In short, Oracle doesn't just offer AI as a feature. It delivers it as a full stack capability from infrastructure to the layer of applications. 02:59 Nikita: Ok, I want to get into the core AI services offered by Oracle Cloud Infrastructure. But before we get into the finer details, broadly speaking, how do these services help businesses? Yunus: These services make AI accessible, secure, and scalable, enabling businesses to embed intelligence into workflows, improve efficiency, and reduce human effort in repetitive or data-heavy tasks. And the best part is, Oracle makes it easy to consume these through application interfaces, APIs, software development kits like SDKs, and integration with Fusion Applications. So, you can add AI where it matters without needing a data scientist team to do that work.  03:52 Lois: So, let’s get down to it. The first core service is Oracle's Generative AI service. What can you tell us about it?  Yunus: This is a fully managed service that allows businesses to tap into the power of large language models. You can actually work with these models from scratch to a well-defined develop model. You can use these models for a wide range of use cases like summarizing text, generating content, answering questions, or building AI-powered chat interfaces.  04:27 Lois: So, what will I find on the OCI Generative AI Console? Yunus: OCI Generative AI Console highlights three key components. The first one is the dedicated AI cluster. These are GPU powered environments used to fine tune and host your own custom models. It gives you control and performance at scale. Then, the second point is the custom models. You can take a base language model and fine tune it using your own data, for example, company manuals or HR policies or customer interactions, which are your own personal data. You can use this to create a model that speaks your business language. And last but not the least, the endpoints. These are the interfaces through which your application connect to the model. Once deployed, your app can query the model securely and at different scales, and you don't need to be a developer to get started. Oracle offers a playground, which is a non-core environment where you can try out models, craft parameters, and test responses interactively. So overall, the generative AI service is designed to make enterprise-grade AI accessible and customizable. So, fitting directly into business processes, whether you are building a smart assistant or you're automating the content generation process.  06:00 Lois: The next key service is OCI Generative AI Agents. Can you tell us more about it?  Yunus: OCI Generative AI agents combines a natural language interface with generative AI models and enterprise data stores to answer questions and take actions. The agent remembers the context, uses previous interactions, and retrieves deeper product speech details. They aren't just static chat bots. They are context aware, grounded in business data, and able to handle multi-turns, follow-up queries with relevant accurate responses, and driving productivity and decision-making across departments like sales, support, or operations. 06:54 Oracle University’s Race to Certification 2025 is your ticket to free training and certification in today’s hottest tech. Whether you’re starting with Artificial Intelligence, Oracle Cloud Infrastructure, Multicloud, or Oracle Data Platform, this challenge covers it all! Learn more about your chance to win prizes and see your name on the Leaderboard by visiting education.oracle.com/race-to-certification-2025. That’s education.oracle.com/race-to-certification-2025. 07:37 Nikita: Welcome back! Yunus, let’s move on to the OCI Language service.  Yunus: OCI Language helps business understand and process natural language at scale. It uses pretrained models, which means they are already trained on large industry data sets and are ready to be used right away without requiring AI expertise. It detects over 100 languages, including English, Japanese, Spanish, and more. This is great for global business that receive multilingual inputs from customers. It works with identity sentiments. For different aspects of the sentence, for example, in a review like, “The food was great, but the service sucked,” OCI Language can tell that food has a positive sentiment while service has a negative one. This is called aspect-based sentiment analysis, and it is more insightful than just labeling the entire text as positive or negative. Then we have got to identify key phrases representing important ideas or subjects. So, it helps in extracting these key phrases, words, or terms that capture the core messages. They help automate tagging, summarizing, or even routing of content like support tickets or emails.  In real life, the businesses are using this for customer feedback analysis, support ticket routing, social media monitoring, and even regulatory compliances.  09:21 Nikita: That’s fantastic. And what about the OCI Speech service?  Yunus: The OCI Speech is an AI service that transcribes speech to text. Think of it as an AI-powered transcription engine that listens to the spoken English, whether in audio or video files, and turns it into usable and searchable and readable text. It provides timestamps, so you know exactly when something was said. A valuable feature for reviewing legal discussions, media footages, or compliance audits. OCI Speech even understands different speakers. You don't need to train this from scratch. It is pre-trained model hosted on an API. Just send your audio to the service, and you get an accurate timestamp text back in return. 10:17 Lois: I know we also have a service for object detection… called OCI Vision?  Yunus: OCI Vision uses pretrained, deep learning models to understand and analyze visual content. Just like a human might, you can upload an image or videos, and the AI can tell you what is in it and where they might be useful. There are two primary use cases, which you can use this particular OCI Vision for. One is for object detection. You have got a red color car. So OCI Vision is not just identifying that’s a car. It is detecting and labeling parts of the car too, like the bumper, the wheels, the design components. This is a critical in industries like manufacturing, retail, or logistics. For example, in quality control, OCI Vision can scan product images to detect missing or defective parts automatically.  Then we have got the image classification. This is useful in scenarios like automated tagging of photos, managing digital assets, classifying this particular scene or context of this particular scene. So basically, when we talk about OCI Vision, which is actually a fully managed, no complex model training is required for this particular service. It's available via API. It is also working with defining their own custom model for working with the environments. 11:51 Nikita: And the final service is related to text and called OCI Document Understanding, right? Yunus: So OCI Document Understanding allows businesses to automatically extract structured insights from unstructured documents like invoices, contracts, recipes, and also sometimes resumes, or even business documents. 12:13 Nikita: And how does it work? Yunus: OCI reads the content from the scanned document. The OCR is smarter. It recognizes both printed and handwritten text. Then determines what type of document it is. So document classification is done. Text recognition recognizes text, then classifies the document. For example, if this is a purchase order, or bank statement, or any medical report. If your business handles documents in multiple languages, then the AI can actually help in language detection also, which helps you in routing the language or translating that particular language. Many documents contain structured data in table format. Think pricing tables or line items. OCI will help you in extracting these with high accuracy for reporting on feeding into ERP systems. And finally, I would say the key value extraction. It puts our critical business values like invoice numbers, payment amounts, or customer names from fields that may not always allow a fixed format. So, this service reduces the need for manual review, cuts down processes time, and ensures high accuracy for your system. 13:36 Lois: What are the key takeaways our listeners should walk away with after this episode? Yunus: The first one, Oracle doesn't treat AI as just a standalone tool. Instead, AI is integrated from the ground up. Whether you're talking about infrastructure, data platforms, machine learning services, or applications like HCM, ERP, or CX. In real world, the Oracle AI Services prioritize data management, security, and governance, all essential for enterprise AI use cases. So, it is about trust. Can your AI handle sensitive data? Can it comply with regulations? Oracle builds its AI services with strong foundation in data governance, robust security measures, and tight control over data residency and access. So this makes Oracle AI especially well-suited for industries like health care, finance, logistics, and government, where compliance and control aren't optional. They are critical.   14:44 Nikita: Thank you for another great conversation, Yunus. If you’re interested in learning more about the topics we discussed today, head on over to mylearn.oracle.com and search for the AI for You course.  Lois: In our next episode, we’ll get into Predictive AI, Generative AI, Agentic AI, all with respect to Oracle Fusion Applications. Until then, this is Lois Houston… Nikita: And Nikita Abraham, signing off! 15:10 That’s all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We’d also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.  
    --------  
    15:39
  • Buy or Build AI?
    How do you decide whether to buy a ready-made AI solution or build one from the ground up? The choice is more than just a technical decision; it’s about aligning AI with your business goals.   In this episode, Lois Houston and Nikita Abraham are joined by Principal Instructor Yunus Mohammed to examine the critical factors influencing the buy vs. build debate. They explore real-world examples where businesses must weigh speed, customization, and long-term strategy. From a startup using a SaaS chatbot to a bank developing a custom fraud detection model, Yunus provides practical insights on when to choose one approach over the other.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode.   ---------------------------------------------------------------   Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:26 Nikita: Welcome to the Oracle University Podcast! I’m Nikita Abraham, Team Lead: Editorial Services with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi there! Last week, we spoke about the key stages in a typical AI workflow and how data quality, feedback loops, and business goals influence AI success. 00:50 Nikita: In today’s episode, we’re going to explore whether you should buy or build AI apps. Joining us again is Principal Instructor Yunus Mohammed. Hi Yunus, let’s jump right in. Why does the decision of buy versus build matter? Yunus: So when we talk about buy versus build matters, we need to consider the strategic business decisions over here. They are related to the strategic decisions which the business makes, and it is evaluated in the decision lens. So the center of the decision lens is the business objective, which identifies what are we trying to solve. Then evaluate our constraints based on that particular business objective like the cost, the time, and the talent. And finally, we can decide whether we need to buy or build. But remember, there is no single correct answer. What's right for one business may not be working for the other one. 01:54 Lois: OK, can you give us examples of both approaches? Yunus: The first example where we have got a startup using a SaaS AI chatbot. Now, being a startup, they have to choose a ready-made solution, which is an AI chatbot. Now, the question is, why did they do this? Because speed and simplicity mattered more than deep customization that is required for the chatbot. So, their main aim was to have it ready in short period of time and make it more simpler. And this actually lead them to get to the market fast with low upfront cost and minimal technical complexities. But in some situations, it might be different. Like, your bank, which needs to build a fraud model. It cannot be outsourced or got from the shelf. So, they build a custom model in-house. With this custom model, they actually have a tighter control, and it is tuned to their standards. And it is created by their experts. So these two generic examples, the chatbot and the fraud model example, helps you in identifying whether I should go for a SaaS product with simple choice of selecting an existing LLM endpoint and not making any changes. Or should I go with model depending on my business and organization requirement and fine tuning that model later to define a better implementation of the scenarios or conditions that I want to do which are specific to my organization. So here you decide with the reference whether I want it to be done faster, or whether I want to be more customized to my organization. So buy it, when it is generic, or build when it is strategic. The SaaS, which is basically software as a service, refers to ready to use cloud-based applications that you access via internet. You can log into the platform and use the built-in AI, there's no setup requirement for those. Real-world examples can be Oracle Fusion apps with AI features enabled. So in-house integration means embedding AI with my own requirements into your own systems, often using custom APIs, data pipelines, and hosting it. It gives you more flexibility but requires a lot of resources and expertise. So real-world example for this scenario can be a logistics heavy company, which is integrating a customer support model into their CX. 04:41 Lois: But what are the pros and cons of each approach? Yunus: So, SaaS and Fusion Applications, basically, they offer fast deployment with little to no coding required, making them ideal for business looking to get started quickly and faster. And they typically come with lower upfront costs and are maintained by vendor, which means updates, security, support are handled externally. However, there are limited customizations and are best suited for common, repeatable use cases. Like, it can be a standard chatbot, or it can be reporting tools, or off the shelf analytics that you want to use. But the in-house or custom integration, you have more control, but it takes longer to build and requires a higher initial investment. The in-house or custom integration approach allows full customization of the features and the workflows, enabling you to design and tailor the AI system to your specific needs. 05:47 Nikita: If you're weighing the choice between buying or building, what are the critical business considerations you'd need to take into account? Yunus: So let's take one of the key business consideration which is time to market. If your goal is to launch fast, maybe you're a startup trying to gain traction quickly, then a prebuilt plug and play AI solution, for example, a chatbot or any other standard analytical tool, might be your best bet. But if you have time and you are aiming for precision, a custom model could be worth the wait. Prebuilt SaaS tools usually have lower upfront costs and a subscription model. It works with putting subscriptions. Custom solutions, on the other hand, may require a bigger investment upfront. In development, you require high talent and infrastructures, but could offer cost savings in the long run. So, ask yourself a question here. Is this AI helping us stand out in the market? If the answer is yes, you may want to build something which is your proprietary. For example, an organization would use a generic recommendation engine. It's a part of their secret sauce. Some use cases require flexibility, like you want to tailor the rules to match your specific risk criteria. So, under that scenarios, you will go for customizing. So, you will go with off the shelf solutions may not give you deep enough requirements that you want to evaluate. So, you get those and you try to customize those. You can go for customization of your AI features. The other important key business consideration is the talent and expertise that your organization have. So, the question that you need to ask in the organization is, do you have an internal team who is well versed in developing AI solutions for you? Or do you have access to one of the teams which can help you build your own proprietary products? If not, you'll go with SaaS. If you do have, then building could unlock greater control over your AI features and AI models. The next core component is your security and data privacy. If you're handling sensitive information, like for example, the health care or finance data, you might not want to send your data to the third-party tools. So in-house models offer better control over data security and compliance. When we leverage a model, it could be a prebuilt or custom model. 08:50 Oracle University is proud to announce three brand new courses that will help your teams unlock the power of Redwood—the next generation design system. Redwood enhances the user experience, boosts efficiency, and ensures consistency across Oracle Fusion Cloud Applications. Whether you're a functional lead, configuration consultant, administrator, developer, or IT support analyst, these courses will introduce you to the Redwood philosophy and its business impact. They’ll also teach you how to use Visual Builder Studio to personalize and extend your Fusion environment. Get started today by visiting mylearn.oracle.com.  09:31 Nikita: Welcome back! So, getting back to what you were saying before the break, what are pre-built and custom models? Yunus: A prebuilt model is an AI solution that has already been trained by someone else, typically a tech provider. It can be used to perform a specific task like recognizing images, translating text, or detecting sentiments. You can think of it like buying a preassembled appliance. You plug it in, configure a few settings, and it's ready to use. You don't need to know how the internal parts work. You benefit from the speed, ease, and reliability of this particular model, which is a prebuilt model. But you can't easily change how it works under the hood. Whereas, a custom model is an AI solution that your organization designs and trains and tunes specifically for their business problems using their own data. You can think of it like designing your own suit. It takes more time and effort to create. It is built to your exact measurements and needs. And you have full control over how it performs and evolves. 10:53 Lois: So, when would you choose a pre-built versus a custom model? Yunus: Depending on speed, simplicity, control, and customization, you can decide on using a prebuilt or to create a custom model. Prebuilt models are like plug and play solutions. Think of tools like Google Translate for languages. OpenAI APIs for summarizing sentiment analysis or chatbots, they are quick to deploy, require low technical effort, great for getting started fast, but they also have limits. Customization is very minimal, and you may not be able to fine tune it to your specific tone or business logic. These work well when the problem is common and nonstrategic, like, scanning documents or auto tagging images. The custom-build model, on the other hand, is a model that is built from the ground up. Using your own data and objectives, they take longer, and they require technical expertise. But they offer precise control, full alignment with your business needs. And these are ideal when you are dealing with sensitive data, competitive workflows, highly specific customer interactions. For example, a bank may build a custom model which can be used for fraud detection, which can be tuned to their exact transaction standards and the patterns of their transactions. 12:37 Nikita: What if someone wants the best of both worlds?  Yunus: We've also got a hybrid approach. In hybrid approach, we actually talk about the adaptation of AI with a strategy which is termed as hybrid strategy. Many companies today don't start by building AI from scratch. Instead, they begin with prebuilt models, like using an API, which can be already performing tasks like summarizing, translating, or answering questions using generic knowledge. This set will help you in getting up and running quickly with a small level results. As your business matures, you can start to layer in your custom data. Think internal policies, frequently asked questions, or customer interactions. And then you can fine tune the model to behave the way your business needs it to behave. Now, your AI starts producing business-ready output, smarter, more relevant, and aligned with your tone, brand, or compliance needs.  13:45 Lois: Ok…let's think of AI deployment in the hybrid approach as following a pyramid or ladder like structure. Can you take us through the different levels?  Yunus: So, on the top, quick start, minimal setup, great for business automation, which can be used as a pilot use case. So, if I'm taking off the shelf APIs or platforms, they can be giving me a faster, less set of requirements, and they are basically acting like a pilot use. Later, you can add your own data or logic so you can add your data. You can fine tune or change your business logic. And this is where fine tuning and prompt engineering helps tailor the AI to your workflows and your language. And then at the end, which is at the bottom, you build your own model. It is reserved for core capabilities or competitive advantages where total control and differentiation matters in building that particular model. You don't need to go all in from one day. So, start with what is available, like, use an off shelf, API, or platform, customize as you grow. Build only when it gives you a true edge. This is what we call the best of both worlds, build and buy. 15:05 Lois: Thank you so much, Yunus, for joining us again. To learn more about the topics covered today, visit mylearn.oracle.com and search for the AI for You course. Nikita: Join us next week for another episode of the Oracle University Podcast where we discuss the Oracle AI stack and Oracle AI services. Until then, this is Nikita Abraham… Lois: And Lois Houston, signing off! 15:29 That’s all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We’d also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    15:58

Mais podcasts de Ensino

Sobre Oracle University Podcast

Oracle University Podcast delivers convenient, foundational training on popular Oracle technologies such as Oracle Cloud Infrastructure, Java, Autonomous Database, and more to help you jump-start or advance your career in the cloud.
Site de podcast

Ouça Oracle University Podcast, Nerdologia e muitos outros podcasts de todo o mundo com o aplicativo o radio.net

Obtenha o aplicativo gratuito radio.net

  • Guardar rádios e podcasts favoritos
  • Transmissão via Wi-Fi ou Bluetooth
  • Carplay & Android Audo compatìvel
  • E ainda mais funções

Oracle University Podcast: Podcast do grupo

Aplicações
Social
v7.23.9 | © 2007-2025 radio.de GmbH
Generated: 10/14/2025 - 1:36:55 AM