Powered by RND
PodcastsEnsinoOracle University Podcast

Oracle University Podcast

Oracle Corporation
Oracle University Podcast
Último episódio

Episódios Disponíveis

5 de 133
  • Buy or Build AI?
    How do you decide whether to buy a ready-made AI solution or build one from the ground up? The choice is more than just a technical decision; it’s about aligning AI with your business goals.   In this episode, Lois Houston and Nikita Abraham are joined by Principal Instructor Yunus Mohammed to examine the critical factors influencing the buy vs. build debate. They explore real-world examples where businesses must weigh speed, customization, and long-term strategy. From a startup using a SaaS chatbot to a bank developing a custom fraud detection model, Yunus provides practical insights on when to choose one approach over the other.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode.   ---------------------------------------------------------------   Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:26 Nikita: Welcome to the Oracle University Podcast! I’m Nikita Abraham, Team Lead: Editorial Services with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi there! Last week, we spoke about the key stages in a typical AI workflow and how data quality, feedback loops, and business goals influence AI success. 00:50 Nikita: In today’s episode, we’re going to explore whether you should buy or build AI apps. Joining us again is Principal Instructor Yunus Mohammed. Hi Yunus, let’s jump right in. Why does the decision of buy versus build matter? Yunus: So when we talk about buy versus build matters, we need to consider the strategic business decisions over here. They are related to the strategic decisions which the business makes, and it is evaluated in the decision lens. So the center of the decision lens is the business objective, which identifies what are we trying to solve. Then evaluate our constraints based on that particular business objective like the cost, the time, and the talent. And finally, we can decide whether we need to buy or build. But remember, there is no single correct answer. What's right for one business may not be working for the other one. 01:54 Lois: OK, can you give us examples of both approaches? Yunus: The first example where we have got a startup using a SaaS AI chatbot. Now, being a startup, they have to choose a ready-made solution, which is an AI chatbot. Now, the question is, why did they do this? Because speed and simplicity mattered more than deep customization that is required for the chatbot. So, their main aim was to have it ready in short period of time and make it more simpler. And this actually lead them to get to the market fast with low upfront cost and minimal technical complexities. But in some situations, it might be different. Like, your bank, which needs to build a fraud model. It cannot be outsourced or got from the shelf. So, they build a custom model in-house. With this custom model, they actually have a tighter control, and it is tuned to their standards. And it is created by their experts. So these two generic examples, the chatbot and the fraud model example, helps you in identifying whether I should go for a SaaS product with simple choice of selecting an existing LLM endpoint and not making any changes. Or should I go with model depending on my business and organization requirement and fine tuning that model later to define a better implementation of the scenarios or conditions that I want to do which are specific to my organization. So here you decide with the reference whether I want it to be done faster, or whether I want to be more customized to my organization. So buy it, when it is generic, or build when it is strategic. The SaaS, which is basically software as a service, refers to ready to use cloud-based applications that you access via internet. You can log into the platform and use the built-in AI, there's no setup requirement for those. Real-world examples can be Oracle Fusion apps with AI features enabled. So in-house integration means embedding AI with my own requirements into your own systems, often using custom APIs, data pipelines, and hosting it. It gives you more flexibility but requires a lot of resources and expertise. So real-world example for this scenario can be a logistics heavy company, which is integrating a customer support model into their CX. 04:41 Lois: But what are the pros and cons of each approach? Yunus: So, SaaS and Fusion Applications, basically, they offer fast deployment with little to no coding required, making them ideal for business looking to get started quickly and faster. And they typically come with lower upfront costs and are maintained by vendor, which means updates, security, support are handled externally. However, there are limited customizations and are best suited for common, repeatable use cases. Like, it can be a standard chatbot, or it can be reporting tools, or off the shelf analytics that you want to use. But the in-house or custom integration, you have more control, but it takes longer to build and requires a higher initial investment. The in-house or custom integration approach allows full customization of the features and the workflows, enabling you to design and tailor the AI system to your specific needs. 05:47 Nikita: If you're weighing the choice between buying or building, what are the critical business considerations you'd need to take into account? Yunus: So let's take one of the key business consideration which is time to market. If your goal is to launch fast, maybe you're a startup trying to gain traction quickly, then a prebuilt plug and play AI solution, for example, a chatbot or any other standard analytical tool, might be your best bet. But if you have time and you are aiming for precision, a custom model could be worth the wait. Prebuilt SaaS tools usually have lower upfront costs and a subscription model. It works with putting subscriptions. Custom solutions, on the other hand, may require a bigger investment upfront. In development, you require high talent and infrastructures, but could offer cost savings in the long run. So, ask yourself a question here. Is this AI helping us stand out in the market? If the answer is yes, you may want to build something which is your proprietary. For example, an organization would use a generic recommendation engine. It's a part of their secret sauce. Some use cases require flexibility, like you want to tailor the rules to match your specific risk criteria. So, under that scenarios, you will go for customizing. So, you will go with off the shelf solutions may not give you deep enough requirements that you want to evaluate. So, you get those and you try to customize those. You can go for customization of your AI features. The other important key business consideration is the talent and expertise that your organization have. So, the question that you need to ask in the organization is, do you have an internal team who is well versed in developing AI solutions for you? Or do you have access to one of the teams which can help you build your own proprietary products? If not, you'll go with SaaS. If you do have, then building could unlock greater control over your AI features and AI models. The next core component is your security and data privacy. If you're handling sensitive information, like for example, the health care or finance data, you might not want to send your data to the third-party tools. So in-house models offer better control over data security and compliance. When we leverage a model, it could be a prebuilt or custom model. 08:50 Oracle University is proud to announce three brand new courses that will help your teams unlock the power of Redwood—the next generation design system. Redwood enhances the user experience, boosts efficiency, and ensures consistency across Oracle Fusion Cloud Applications. Whether you're a functional lead, configuration consultant, administrator, developer, or IT support analyst, these courses will introduce you to the Redwood philosophy and its business impact. They’ll also teach you how to use Visual Builder Studio to personalize and extend your Fusion environment. Get started today by visiting mylearn.oracle.com.  09:31 Nikita: Welcome back! So, getting back to what you were saying before the break, what are pre-built and custom models? Yunus: A prebuilt model is an AI solution that has already been trained by someone else, typically a tech provider. It can be used to perform a specific task like recognizing images, translating text, or detecting sentiments. You can think of it like buying a preassembled appliance. You plug it in, configure a few settings, and it's ready to use. You don't need to know how the internal parts work. You benefit from the speed, ease, and reliability of this particular model, which is a prebuilt model. But you can't easily change how it works under the hood. Whereas, a custom model is an AI solution that your organization designs and trains and tunes specifically for their business problems using their own data. You can think of it like designing your own suit. It takes more time and effort to create. It is built to your exact measurements and needs. And you have full control over how it performs and evolves. 10:53 Lois: So, when would you choose a pre-built versus a custom model? Yunus: Depending on speed, simplicity, control, and customization, you can decide on using a prebuilt or to create a custom model. Prebuilt models are like plug and play solutions. Think of tools like Google Translate for languages. OpenAI APIs for summarizing sentiment analysis or chatbots, they are quick to deploy, require low technical effort, great for getting started fast, but they also have limits. Customization is very minimal, and you may not be able to fine tune it to your specific tone or business logic. These work well when the problem is common and nonstrategic, like, scanning documents or auto tagging images. The custom-build model, on the other hand, is a model that is built from the ground up. Using your own data and objectives, they take longer, and they require technical expertise. But they offer precise control, full alignment with your business needs. And these are ideal when you are dealing with sensitive data, competitive workflows, highly specific customer interactions. For example, a bank may build a custom model which can be used for fraud detection, which can be tuned to their exact transaction standards and the patterns of their transactions. 12:37 Nikita: What if someone wants the best of both worlds?  Yunus: We've also got a hybrid approach. In hybrid approach, we actually talk about the adaptation of AI with a strategy which is termed as hybrid strategy. Many companies today don't start by building AI from scratch. Instead, they begin with prebuilt models, like using an API, which can be already performing tasks like summarizing, translating, or answering questions using generic knowledge. This set will help you in getting up and running quickly with a small level results. As your business matures, you can start to layer in your custom data. Think internal policies, frequently asked questions, or customer interactions. And then you can fine tune the model to behave the way your business needs it to behave. Now, your AI starts producing business-ready output, smarter, more relevant, and aligned with your tone, brand, or compliance needs.  13:45 Lois: Ok…let's think of AI deployment in the hybrid approach as following a pyramid or ladder like structure. Can you take us through the different levels?  Yunus: So, on the top, quick start, minimal setup, great for business automation, which can be used as a pilot use case. So, if I'm taking off the shelf APIs or platforms, they can be giving me a faster, less set of requirements, and they are basically acting like a pilot use. Later, you can add your own data or logic so you can add your data. You can fine tune or change your business logic. And this is where fine tuning and prompt engineering helps tailor the AI to your workflows and your language. And then at the end, which is at the bottom, you build your own model. It is reserved for core capabilities or competitive advantages where total control and differentiation matters in building that particular model. You don't need to go all in from one day. So, start with what is available, like, use an off shelf, API, or platform, customize as you grow. Build only when it gives you a true edge. This is what we call the best of both worlds, build and buy. 15:05 Lois: Thank you so much, Yunus, for joining us again. To learn more about the topics covered today, visit mylearn.oracle.com and search for the AI for You course. Nikita: Join us next week for another episode of the Oracle University Podcast where we discuss the Oracle AI stack and Oracle AI services. Until then, this is Nikita Abraham… Lois: And Lois Houston, signing off! 15:29 That’s all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We’d also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    15:58
  • The AI Workflow
    Join Lois Houston and Nikita Abraham as they chat with Yunus Mohammed, a Principal Instructor at Oracle University, about the key stages of AI model development. From gathering and preparing data to selecting, training, and deploying models, learn how each phase impacts AI’s real-world effectiveness. The discussion also highlights why monitoring AI performance and addressing evolving challenges are critical for long-term success.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/252500   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode.   --------------------------------------------------------------   Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:25 Lois: Welcome to the Oracle University Podcast! I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services. Nikita: Hey everyone! In our last episode, we spoke about generative AI and gen AI agents. Today, we’re going to look at the key stages in a typical AI workflow. We’ll also discuss how data quality, feedback loops, and business goals influence AI success. With us today is Yunus Mohammed, a Principal Instructor at Oracle University.  01:00 Lois: Hi Yunus! We're excited to have you here! Can you walk us through the various steps in developing and deploying an AI model?  Yunus: The first point is the collect data. We gather relevant data, either historical or real time. Like customer transactions, support tickets, survey feedbacks, or sensor logs. A travel company, for example, can collect past booking data to predict future demand. So, data is the most crucial and the important component for building your AI models. But it's not just the data. You need to prepare the data. In the prepared data process, we clean, organize, and label the data. AI can't learn from messy spreadsheets. We try to make the data more understandable and organized, like removing duplicates, filling missing values in the data with some default values or formatting dates. All these comes under organization of the data and give a label to the data, so that the data becomes more supervised. After preparing the data, I go for selecting the model to train. So now, we pick what type of model fits your goals. It can be a traditional ML model or a deep learning network model, or it can be a generative model. The model is chosen based on the business problems and the data we have. So, we train the model using the prepared data, so it can learn the patterns of the data. Then after the model is trained, I need to evaluate the model. You check how well the model performs. Is it accurate? Is it fair? The metrics of the evaluation will vary based on the goal that you're trying to reach. If your model misclassifies emails as spam and it is doing it very much often, then it is not ready. So I need to train it further. So I need to train it to a level when it identifies the official mail as official mail and spam mail as spam mail accurately.  After evaluating and making sure your model is perfectly fitting, you go for the next step, which is called the deploy model. Once we are happy, we put it into the real world, like into a CRM, or a web application, or an API. So, I can configure that with an API, which is application programming interface, or I add it to a CRM, Customer Relationship Management, or I add it to a web application that I've got. Like for example, a chatbot becomes available on your company's website, and the chatbot might be using a generative AI model. Once I have deployed the model and it is working fine, I need to keep track of this model, how it is working, and need to monitor and improve whenever needed. So I go for a stage, which is called as monitor and improve. So AI isn't set in and forget it. So over time, there are lot of changes that is happening to the data. So we monitor performance and retrain when needed. An e-commerce recommendation model needs updates as there might be trends which are shifting.  So the end user finally sees the results after all the processes. A better product, or a smarter service, or a faster decision-making model, if we do this right. That is, if we process the flow perfectly, they may not even realize AI is behind it to give them the accurate results.  04:59 Nikita: Got it. So, everything in AI begins with data. But what are the different types of data used in AI development?  Yunus: We work with three main types of data: structured, unstructured, and semi-structured. Structured data is like a clean set of tables in Excel or databases, which consists of rows and columns with clear and consistent data information. Unstructured is messy data, like your email or customer calls that records videos or social media posts, so they all comes under unstructured data.  Semi-structured data is things like logs on XML files or JSON files. Not quite neat but not entirely messy either. So they are, they are termed semi-structured. So structured, unstructured, and then you've got the semi-structured. 05:58 Nikita: Ok… and how do the data needs vary for different AI approaches?  Yunus: Machine learning often needs labeled data. Like a bank might feed past transactions labeled as fraud or not fraud to train a fraud detection model. But machine learning also includes unsupervised learning, like clustering customer spending behavior. Here, no labels are needed. In deep learning, it needs a lot of data, usually unstructured, like thousands of loan documents, call recordings, or scan checks. These are fed into the models and the neural networks to detect and complex patterns. Data science focus on insights rather than the predictions. So a data scientist at the bank might use customer relationship management exports and customer demographies to analyze which age group prefers credit cards over the loans. Then we have got generative AI that thrives on diverse, unstructured internet scalable data. Like it is getting data from books, code, images, chat logs. So these models, like ChatGPT, are trained to generate responses or mimic the styles and synthesize content. So generative AI can power a banking virtual assistant trained on chat logs and frequently asked questions to answer customer queries 24/7. 07:35 Lois: What are the challenges when dealing with data?  Yunus: Data isn't just about having enough. We must also think about quality. Is it accurate and relevant? Volume. Do we have enough for the model to learn from? And is my data consisting of any kind of unfairly defined structures, like rejecting more loan applications from a certain zip code, which actually gives you a bias of data? And also the privacy. Are we handling personal data responsibly or not? Especially data which is critical or which is regulated, like the banking sector or health data of the patients. Before building anything smart, we must start smart.  08:23 Lois: So, we’ve established that collecting the right data is non-negotiable for success. Then comes preparing it, right?  Yunus: This is arguably the most important part of any AI or data science project. Clean data leads to reliable predictions. Imagine you have a column for age, and someone accidentally entered an age of like 999. That's likely a data entry error. Or maybe a few rows have missing ages. So we either fix, remove, or impute such issues. This step ensures our model isn't misled by incorrect values. Dates are often stored in different formats. For instance, a date, can be stored as the month and the day values, or it can be stored in some places as day first and month next. We want to bring everything into a consistent, usable format. This process is called as transformation. The machine learning models can get confused if one feature, like example the income ranges from 10,000 to 100,000, and another, like the number of kids, range from 0 to 5. So we normalize or scale values to bring them to a similar range, say 0 or 1. So we actually put it as yes or no options. So models don't understand words like small, medium, or large. We convert them into numbers using encoding. One simple way is assigning 1, 2, and 3 respectively. And then you have got removing stop words like the punctuations, et cetera, and break the sentence into smaller meaningful units called as tokens. This is actually used for generative AI tasks. In deep learning, especially for Gen AI, image or audio inputs must be of uniform size and format.  10:31 Lois: And does each AI system have a different way of preparing data?  Yunus: For machine learning ML, focus is on cleaning, encoding, and scaling. Deep learning needs resizing and normalization for text and images. Data science, about reshaping, aggregating, and getting it ready for insights. The generative AI needs special preparation like chunking, tokenizing large documents, or compressing images. 11:06 Oracle University’s Race to Certification 2025 is your ticket to free training and certification in today’s hottest tech. Whether you’re starting with Artificial Intelligence, Oracle Cloud Infrastructure, Multicloud, or Oracle Data Platform, this challenge covers it all! Learn more about your chance to win prizes and see your name on the Leaderboard by visiting education.oracle.com/race-to-certification-2025. That’s education.oracle.com/race-to-certification-2025. 11:50 Nikita: Welcome back! Yunus, how does a user choose the right model to solve their business problem?  Yunus: Just like a business uses different dashboards for marketing versus finance, in AI, we use different model types, depending on what we are trying to solve. Like classification is choosing a category. Real-world example can be whether the email is a spam or not. Use in fraud detection, medical diagnosis, et cetera. So what you do is you classify that particular data and then accurately access that classification of data. Regression, which is used for predicting a number, like, what will be the price of a house next month? Or it can be a useful in common forecasting sales demands or on the cost. Clustering, things without labels. So real-world examples can be segmenting customers based on behavior for targeted marketing. It helps discovering hidden patterns in large data sets.  Generation, that is creating new content. So AI writing product description or generating images can be a real-world example for this. And it can be used in a concept of generative AI models like ChatGPT or Dall-E, which operates on the generative AI principles. 13:16 Nikita: And how do you train a model? Yunus: We feed it with data in small chunks or batches and then compare its guesses to the correct values, adjusting its thinking like weights to improve next time, and the cycle repeats until the model gets good at making predictions. So if you're building a fraud detection system, ML may be enough. If you want to analyze medical images, you will need deep learning. If you're building a chatbot, go for a generative model like the LLM. And for all of these use cases, you need to select and train the applicable models as and when appropriate. 14:04 Lois: OK, now that the model’s been trained, what else needs to happen before it can be deployed? Yunus: Evaluate the model, assess a model's accuracy, reliability, and real-world usefulness before it's put to work. That is, how often is the model right? Does it consistently perform well? Is it practical in the real world to use this model or not? Because if I have bad predictions, doesn't just look bad, it can lead to costly business mistakes. Think of recommending the wrong product to a customer or misidentifying a financial risk.  So what we do here is we start with splitting the data into two parts. So we train the data by training data. And this is like teaching the model. And then we have got the testing data. This is actually used for checking how well the model has learned. So once trained, the model makes predictions. We compare the predictions to the actual answers, just like checking your answer after a quiz. We try to go in for tailored evaluation based on AI types. Like machine learning, we care about accuracy in prediction. Deep learning is about fitting complex data like voice or images, where the model repeatedly sees examples and tunes itself to reduce errors. Data science, we look for patterns and insights, such as which features will matter. In generative AI, we judge by output quality. Is it coherent, useful, and is it natural?  The model improves with the accuracy and the number of epochs the training has been done on.  15:59 Nikita: So, after all that, we finally come to deploying the model… Yunus: Deploying a model means we are integrating it into our actual business system. So it can start making decisions, automating tasks, or supporting customer experiences in real time. Think of it like this. Training is teaching the model. Evaluating is testing it. And deployment is giving it a job.  The model needs a home either in the cloud or inside your company's own servers. Think of it like putting the AI in place where it can be reached by other tools. Exposed via API or embedded in an app, or you can say application, this is how the AI becomes usable.  Then, we have got the concept of receives live data and returns predictions. So receives live data and returns prediction is when the model listens to real-time inputs like a user typing, or user trying to search or click or making a transaction, and then instantly, your AI responds with a recommendation, decisions, or results. Deploying the model isn’t the end of the story. It is just the beginning of the AI's real-world journey. Models may work well on day one, but things change. Customer behavior might shift. New products get introduced in the market. Economic conditions might evolve, like the era of COVID, where the demand shifted and the economical conditions actually changed. 17:48 Lois: Then it’s about monitoring and improving the model to keep things reliable over time. Yunus: The monitor and improve loop is a continuous process that ensures an AI model remains accurate, fair, and effective after deployment. The live predictions, the model is running in real time, making decisions or recommendations. The monitor performance are those predictions still accurate and helpful. Is latency acceptable? This is where we track metrics, user feedbacks, and operational impact. Then, we go for detect issues, like accuracy is declining, are responses feeling biased, are customers dropping off due to long response times? And the next step will be to reframe or update the model. So we add fresh data, tweak the logic, or even use better architectures to deploy the uploaded model, and the new version replaces the old one and the cycle continues again. 18:58 Lois: And are there challenges during this step? Yunus: The common issues, which are related to monitor and improve consist of model drift, bias, and latency of failures. In model drift, the model becomes less accurate as the environment changes. Or bias, the model may favor or penalize certain groups unfairly. Latency or failures, if the model is too slow or fails unpredictably, it disrupts the user experience. Let's take the loan approvals. In loan approvals, if we notice an unusually high rejection rate due to model bias, we might retrain the model with more diverse or balanced data. For a chatbot, we watch for customer satisfaction, which might arise due to model failure and fine-tune the responses for the model. So in forecasting demand, if the predictions no longer match real trends, say post-pandemic, due to the model drift, we update the model with fresh data.  20:11 Nikita: Thanks for that, Yunus. Any final thoughts before we let you go? Yunus: No matter how advanced your model is, its effectiveness depends on the quality of the data you feed it. That means, the data needs to be clean, structured, and relevant. It should map itself to the problem you're solving. If the foundation is weak, the results will be also. So data preparation is not just a technical step, it is a business critical stage. Once deployed, AI systems must be monitored continuously, and you need to watch for drops in performance for any bias being generated or outdated logic, and improve the model with new data or refinements. That's what makes AI reliable, ethical, and sustainable in the long run. 21:09 Nikita: Yunus, thank you for this really insightful session. If you’re interested in learning more about the topics we discussed today, go to mylearn.oracle.com and search for the AI for You course.  Lois: That’s right. You’ll find skill checks to help you assess your understanding of these concepts. In our next episode, we’ll discuss the idea of buy versus build in the context of AI. Until then, this is Lois Houston… Nikita: And Nikita Abraham, signing off! 21:39 That’s all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We’d also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    22:08
  • Core AI Concepts – Part 3
    Join hosts Lois Houston and Nikita Abraham, along with Principal AI/ML Instructor Himanshu Raj, as they discuss the transformative world of Generative AI. Together, they uncover the ways in which generative AI agents are changing the way we interact with technology, automating tasks and delivering new possibilities.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/252500   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:25 Lois: Welcome to the Oracle University Podcast! I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead of Editorial Services.   Nikita: Hi everyone! Last week was Part 2 of our conversation on core AI concepts, where we went over the basics of data science. In Part 3 today, we’ll look at generative AI and gen AI agents in detail. To help us with that, we have Himanshu Raj, Principal AI/ML Instructor. Hi Himanshu, what’s the difference between traditional AI and generative AI?  01:01 Himanshu: So until now, when we talked about artificial intelligence, we usually meant models that could analyze information and make decisions based on it, like a judge who looks at evidence and gives a verdict. And that's what we call traditional AI that's focused on analysis, classification, and prediction.  But with generative AI, something remarkable happens. Generative AI does not just evaluate. It creates. It's more like a storyteller who uses knowledge from the past to imagine and build something brand new. For example, instead of just detecting if an email is spam, generative AI could write an entirely new email for you.  Another example, traditional AI might predict what a photo contains. Generative AI, on the other hand, creates a brand-new photo based on description. Generative AI refers to artificial intelligence models that can create entirely new content, such as text, images, music, code, or video that resembles human-made work.  Instead of simple analyzing or predicting, generative AI produces something original that resembles what a human might create.   02:16 Lois: How did traditional AI progress to the generative AI we know today?  Himanshu: First, we will look at small supervised learning. So in early days, AI models were trained on small labeled data sets. For example, we could train a model with a few thousand emails labeled spam or not spam. The model would learn simple decision boundaries. If email contains, "congratulations," it might be spam. This was efficient for a straightforward task, but it struggled with anything more complex.  Then, comes the large supervised learning. As the internet exploded, massive data sets became available, so millions of images, billions of text snippets, and models got better because they had much more data and stronger compute power and thanks to advances, like GPUs, and cloud computing, for example, training a model on millions of product reviews to predict customer sentiment, positive or negative, or to classify thousands of images in cars, dogs, planes, etc.  Models became more sophisticated, capturing deeper patterns rather than simple rules. And then, generative AI came into the picture, and we eventually reached a point where instead of just classifying or predicting, models could generate entirely new content.  Generative AI models like ChatGPT or GitHub Copilot are trained on enormous data sets, not to simply answer a yes or no, but to create outputs that look and feel like human made. Instead of judging the spam or sentiment, now the model can write an article, compose a song, or paint a picture, or generate new software code.  03:55 Nikita: Himanshu, what motivated this sort of progression?   Himanshu: Because of the three reasons. First one, data, we had way more of it thanks to the internet, smartphones, and social media. Second is compute. Graphics cards, GPUs, parallel computing, and cloud systems made it cheap and fast to train giant models.  And third, and most important is ambition. Humans always wanted machines not just to judge existing data, but to create new knowledge, art, and ideas.   04:25 Lois: So, what’s happening behind the scenes? How is gen AI making these things happen?  Himanshu: Generative AI is about creating entirely new things across different domains. On one side, we have large language models or LLMs.  They are masters of generating text conversations, stories, emails, and even code. And on the other side, we have diffusion models. They are the creative artists of AI, turning text prompts into detailed images, paintings, or even videos.  And these two together are like two different specialists. The LLM acts like a brain that understands and talks, and the diffusion model acts like an artist that paints based on the instructions. And when we connect these spaces together, we create something called multimodal AI, systems that can take in text and produce images, audio, or other media, opening a whole new range of possibilities.  It can not only take the text, but also deal in different media options. So today when we say ChatGPT or Gemini, they can generate images, and it's not just one model doing everything. These are specialized systems working together behind the scenes.  05:38 Lois: You mentioned large language models and how they power text-based gen AI, so let’s talk more about them. Himanshu, what is an LLM and how does it work?  Himanshu: So it's a probabilistic model of text, which means, it tries to predict what word is most likely to come next based on what came before.  This ability to predict one word at a time intelligently is what builds full sentences, paragraphs, and even stories.  06:06 Nikita: But what’s large about this? Why’s it called a large language model?   Himanshu: It simply means the model has lots and lots of parameters. And think of parameters as adjustable dials the model fine tuned during learning.  There is no strict rule, but today, large models can have billions or even trillions of these parameters. And the more the parameters, more complex patterns, the model can understand and can generate a language better, more like human.  06:37 Nikita: Ok… and image-based generative AI is powered by diffusion models, right? How do they work?  Himanshu: Diffusion models start with something that looks like pure random noise.  Imagine static on an old TV screen. No meaningful image at all. From there, the model carefully removes noise step by step to create something more meaningful and think of it like sculpting a statue. You start with a rough block of stone and slowly, carefully you chisel away to reveal a beautiful sculpture hidden inside.  And in each step of this process, the AI is making an educated guess based on everything it has learned from millions of real images. It's trying to predict.   07:24 Stay current by taking the 2025 Oracle Fusion Cloud Applications Delta Certifications. This is your chance to demonstrate your understanding of the latest features and prove your expertise by obtaining a globally recognized certification, all for free! Discover the certification paths, use the resources on MyLearn to prepare, and future-proof your skills. Get started now at mylearn.oracle.com.  07:53 Nikita: Welcome back! Himanshu, for most of us, our experience with generative AI is with text-based tools like ChatGPT. But I’m sure the uses go far beyond that, right? Can you walk us through some of them?  Himanshu: First one is text generation. So we can talk about chatbots, which are now capable of handling nuanced customer queries in banking travel and retail, saving companies hours of support time. Think of a bank chatbot helping a customer understand mortgage options or virtual HR Assistant in a large company, handling leave request. You can have embedding models which powers smart search systems.  Instead of searching by keywords, businesses can now search by meaning. For instance, a legal firm can search cases about contract violations in tech and get semantically relevant results, even if those exact words are not used in the documents.  The third one, for example, code generation, tools like GitHub Copilot help developers write boilerplate or even functional code, accelerating software development, especially in routine or repetitive tasks. Imagine writing a waveform with just a few prompts.  The second application, is image generation. So first obvious use is art. So designers and marketers can generate creative concepts instantly. Say, you need illustrations for a campaign on future cities. Generative AI can produce dozens of stylized visuals in minutes.  For design, interior designers or architects use it to visualize room layouts or design ideas even before a blueprint is finalized. And realistic images, retail companies generate images of people wearing their clothing items without needing real models or photoshoots, and this reduces the cost and increase the personalization.  Third application is multimodal systems, and these are combined systems that take one kind of input or a combination of different inputs and produce different kind of outputs, or can even combine various kinds, be it text image in both input and output.  Text to image It's being used in e-commerce, movie concept art, and educational content creation. For text to video, this is still in early days, but imagine creating a product explainer video just by typing out the script. Marketing teams love this for quick turnarounds. And the last one is text to audio.  Tools like ElevenLabs can convert text into realistic, human like voiceovers useful in training modules, audiobooks, and accessibility apps. So generative AI is no longer just a technical tool. It's becoming a creative copilot across departments, whether it's marketing, design, product support, and even operations.  10:42 Lois: That’s great! So, we’ve established that generative AI is pretty powerful. But what kind of risks does it pose for businesses and society in general?  Himanshu: The first one is deepfakes. Generative AI can create fake but highly realistic media, video, audios or even faces that look and sound authentic.  Imagine a fake video of a political leader announcing a policy, they never approved. This could cause mass confusion or even impact elections. In case of business, deepfakes can be also used in scams where a CEO's voice is faked to approve fraudulent transactions.  Number two, bias, if AI is trained on biased historical data, it can reinforce stereotypes even when unintended. For example, a hiring AI system that favors male candidates over equally qualified women because of historical data was biased.  And this bias can expose companies to discrimination, lawsuits, brand damage and ethical concerns. Number three is hallucinations. So sometimes AI system confidently generate information that is completely wrong without realizing it.   Sometimes you ask a chatbot for a legal case summary, and it gives you a very convincing but entirely made up court ruling. In case of business impact, sectors like health care, finance, or law hallucinations can or could have serious or even dangerous consequences if not caught.  The fourth one is copyright and IP issues, generative AI creates new content, but often, based on material it was trained on. Who owns a new work? A real life example could be where an artist finds their unique style was copied by an AI that was trained on their paintings without permission.  In case of a business impact, companies using AI-generated content for marketing, branding or product designs must watch for legal gray areas around copyright and intellectual properties. So generative AI is not just a technology conversation, it's a responsibility conversation. Businesses must innovate and protect.  Creativity and caution must go together.   12:50 Nikita: Let’s move on to generative AI agents. How is a generative AI agent different from just a chatbot or a basic AI tool?  Himanshu: So think of it like a smart assistant, not just answering your questions, but also taking actions on your behalf. So you don't just ask, what's the best flight to Vegas? Instead, you tell the agent, book me a flight to Vegas and a room at the Hilton. And it goes ahead, understands that, finds the options, connects to the booking tools, and gets it done.   So act on your behalf using goals, context, and tools, often with a degree of autonomy. Goals, are user defined outcomes. Example, I want to fly to Vegas and stay at Hilton. Context, this includes preferences history, constraints like economy class only or don't book for Mondays.  Tools could be APIs, databases, or services it can call, such as a travel API or a company calendar. And together, they let the agent reason, plan, and act.   14:02 Nikita: How does a gen AI agent work under the hood?  Himanshu: So usually, they go through four stages. First, one is understands and interprets your request like natural language understanding. Second, figure out what needs to be done, in this case flight booking plus hotel search.  Third, retrieves data or connects to tools APIs if needed, such as Skyscanner, Expedia, or a Calendar. And fourth is takes action. That means confirming the booking and giving you a response like your travel is booked. Keep in mind not all gen AI agents are fully independent.  14:38 Lois: Himanshu, we’ve seen people use the terms generative AI agents and agentic AI interchangeably. What’s the difference between the two?  Himanshu: Agentic AI is a broad umbrella. It refers to any AI system that can perceive, reason, plan, and act toward a goal and may improve and adapt over time.   Most gen AI agents are reactive, not proactive. On the other hand, agentic AI can plan ahead, anticipate problems, and can even adjust strategies.  So gen AI agents are often semi-autonomous. They act in predefined ways or with human approval. Agentic systems can range from low to full autonomy. For example, auto-GPT runs loops without user prompts and autonomous car decides routes and reactions.  Most gen AI agents can only make multiple steps if explicitly designed that way, like a step-by-step logic flows in LangChain. And in case of agentic AI, it can plan across multiple steps with evolving decisions.  On the memory and goal persistence, gen AI agents are typically stateless. That means they forget their goal unless you remind them. In case of agentic AI, these systems remember, adapt, and refine based on goal progression. For example, a warehouse robot optimizing delivery based on changing layouts.  Some generative AI agents are agentic, like auto GPT. They use LLMs to reason, plan, and act, but not all. And likewise not all agentic AIs are generative. For example, an autonomous car, which may use computer vision control systems and planning, but no generative models.  So agentic AI is a design philosophy or system behavior, which could be goal-driven, autonomous, and decision making. They can overlap, but as I said, not all generative AI agents are agentic, and not all agentic AI systems are generative.  16:39 Lois: What makes a generative AI agent actually work?  Himanshu: A gen AI agent isn't just about answering the question. It's about breaking down a user's goal, figuring out how to achieve it, and then executing that plan intelligently. These agents are built from five core components and each playing a critical role.  The first one is goal. So what is this agent trying to achieve? Think of this as the mission or intent. For example, if I tell the agent, help me organized a team meeting for Friday. So the goal in that case would be schedule a meeting.  Number 2, memory. What does it remember? So this is the agent's context awareness. Storing previous chats, preferences, or ongoing tasks. For example, if last week I said I prefer meetings in the afternoon or I have already shared my team's availability, the agent can reuse that. And without the memory, the agent behaves stateless like a typical chatbot that forgets context after every prompt.  Third is tools. What can it access? Agents aren't just smart, they are also connected. They can be given access to tools like calendars, CRMs, web APIs, spreadsheets, and so on.  The fourth one is planner. So how does it break down the goal? And this is where the reasoning happens. The planner breaks big goals into a step-by-step plans, for example checking team availability, drafting meeting invite, and then sending the invite. And then probably, will confirm the booking. Agents don't just guess. They reason and organize actions into a logical path.  And the fifth and final one is executor, who gets it done. And this is where the action takes place. The executor performs what the planner lays out. For example, calling APIs, sending message, booking reservations, and if planner is the architect, executor is the builder.   18:36 Nikita: And where are generative AI agents being used?  Himanshu: Generative AI agents aren't just abstract ideas, they are being used across business functions to eliminate repetitive work, improve consistency, and enable faster decision making. For marketing, a generative AI agent can search websites and social platforms to summarize competitor activity. They can draft content for newsletters or campaign briefs in your brand tone, and they can auto-generate email variations based on audience segment or engagement history.  For finance, a generative AI agent can auto-generate financial summaries and dashboards by pulling from ERP spreadsheets and BI tools. They can also draft variance analysis and budget reports tailored for different departments. They can scan regulations or policy documents to flag potential compliance risks or changes.  For sales, a generative AI agent can auto-draft personalized sales pitches based on customer behavior or past conversations. They can also log CRM entries automatically once submitting summary is generated. They can also generate battlecards or next-step recommendations based on the deal stage.  For human resource, a generative AI agent can pre-screen resumes based on job requirements. They can send interview invites and coordinate calendars. A common theme here is that generative AI agents help you scale your teams without scaling the headcount.   20:02 Nikita: Himanshu, let’s talk about the capabilities and benefits of generative AI agents.  Himanshu: So generative AI agents are transforming how entire departments function. For example, in customer service, 24/7 AI agents handle first level queries, freeing humans for complex cases.  They also enhance the decision making. Agents can quickly analyze reports, summarize lengthy documents, or spot trends across data sets. For example, a finance agent reviewing Excel data can highlight cash flow anomalies or forecast trends faster than a team of analysts.  In case of personalization, the agents can deliver unique, tailored experiences without manual effort. For example, in marketing, agents generate personalized product emails based on each user's past behavior. For operational efficiency, they can reduce repetitive, low-value tasks. For example, an HR agent can screen hundreds of resumes, shortlist candidates, and auto-schedule interviews, saving HR team hours each week.  21:06 Lois: Ok. And what are the risks of using generative AI agents?  Himanshu: The first one is job displacement. Let's be honest, automation raises concerns. Roles involving repetitive tasks such as data entry, content sorting are at risk. In case of ethics and accountability, when an AI agent makes a mistake, who is responsible? For example, if an AI makes a biased hiring decision or gives incorrect medical guidance, businesses must ensure accountability and fairness.  For data privacy, agents often access sensitive data, for example employee records or customer history. If mishandled, it could lead to compliance violations. In case of hallucinations, agents may generate confident but incorrect outputs called hallucinations. This can often mislead users, especially in critical domains like health care, finance, or legal.  So generative AI agents aren't just tools, they are a force multiplier. But they need to be deployed thoughtfully with a human lens and strong guardrails. And that's how we ensure the benefits outweigh the risks.  22:10 Lois: Thank you so much, Himanshu, for educating us. We’ve had such a great time with you! If you want to learn more about the topics discussed today, head over to mylearn.oracle.com and get started on the AI for You course.  Nikita: Join us next week as we chat about AI workflows and tools. Until then, this is Nikita Abraham…  Lois: And Lois Houston signing off!  22:32 That’s all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We’d also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.  
    --------  
    23:02
  • Core AI Concepts – Part 2
    In this episode, Lois Houston and Nikita Abraham continue their discussion on AI fundamentals, diving into Data Science with Principal AI/ML Instructor Himanshu Raj. They explore key concepts like data collection, cleaning, and analysis, and talk about how quality data drives impactful insights.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/252500   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ---------------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:25 Lois: Hello and welcome to the Oracle University Podcast. I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me today is Nikita Abraham, Team Lead: Editorial Services.  Nikita: Hi everyone! Last week, we began our exploration of core AI concepts, specifically machine learning and deep learning. I’d really encourage you to go back and listen to the episode if you missed it.   00:52 Lois: Yeah, today we’re continuing that discussion, focusing on data science, with our Principal AI/ML Instructor Himanshu Raj.  Nikita: Hi Himanshu! Thanks for joining us again. So, let’s get cracking! What is data science?  01:06 Himanshu: It's about collecting, organizing, analyzing, and interpreting data to uncover valuable insights that help us make better business decisions. Think of data science as the engine that transforms raw information into strategic action.  You can think of a data scientist as a detective. They gather clues, which is our data. Connect the dots between those clues and ultimately solve mysteries, meaning they find hidden patterns that can drive value.  01:33 Nikita: Ok, and how does this happen exactly?  Himanshu: Just like a detective relies on both instincts and evidence, data science blends domain expertise and analytical techniques. First, we collect raw data. Then we prepare and clean it because messy data leads to messy conclusions. Next, we analyze to find meaningful patterns in that data. And finally, we turn those patterns into actionable insights that businesses can trust.  02:00 Lois: So what you’re saying is, data science is not just about technology; it's about turning information into intelligence that organizations can act on. Can you walk us through the typical steps a data scientist follows in a real-world project?  Himanshu: So it all begins with business understanding. Identifying the real problem we are trying to solve. It's not about collecting data blindly. It's about asking the right business questions first. And once we know the problem, we move to data collection, which is gathering the relevant data from available sources, whether internal or external.  Next one is data cleaning. Probably the least glamorous but one of the most important steps. And this is where we fix missing values, remove errors, and ensure that the data is usable. Then we perform data analysis or what we call exploratory data analysis.  Here we look for patterns, prints, and initial signals hidden inside the data. After that comes the modeling and evaluation, where we apply machine learning or deep learning techniques to predict, classify, or forecast outcomes. Machine learning, deep learning are like specialized equipment in a data science detective's toolkit. Powerful but not the whole investigation.  We also check how good the models are in terms of accuracy, relevance, and business usefulness. Finally, if the model meets expectations, we move to deployment and monitoring, putting the model into real world use and continuously watching how it performs over time.  03:34 Nikita: So, it’s a linear process?  Himanshu: It's not linear. That's because in real world data science projects, the process does not stop after deployment. Once the model is live, business needs may evolve, new data may become available, or unexpected patterns may emerge.  And that's why we come back to business understanding again, defining the questions, the strategy, and sometimes even the goals based on what we have learned. In a way, a good data science project behaves like living in a system which grows, adapts, and improves over time. Continuous improvement keeps it aligned with business value.   Now, think of it like adjusting your GPS while driving. The route you plan initially might change as new traffic data comes in. Similarly, in data science, new information constantly help refine our course. The quality of our data determines the quality of our results.   If the data we feed into our models is messy, inaccurate, or incomplete, the outputs, no matter how sophisticated the technology, will be also unreliable. And this concept is often called garbage in, garbage out. Bad input leads to bad output.  Now, think of it like cooking. Even the world's best Michelin star chef can't create a masterpiece with spoiled or poor-quality ingredients. In the same way, even the most advanced AI models can't perform well if the data they are trained on is flawed.  05:05 Lois: Yeah, that's why high-quality data is not just nice to have, it’s absolutely essential. But Himanshu, what makes data good?   Himanshu: Good data has a few essential qualities. The first one is complete. Make sure we aren't missing any critical field. For example, every customer record must have a phone number and an email. It should be accurate. The data should reflect reality. If a customer's address has changed, it must be updated, not outdated. Third, it should be consistent. Similar data must follow the same format. Imagine if the dates are written differently, like 2024/04/28 versus April 28, 2024. We must standardize them.   Fourth one. Good data should be relevant. We collect only the data that actually helps solve our business question, not unnecessary noise. And last one, it should be timely. So data should be up to date. Using last year's purchase data for a real time recommendation engine wouldn't be helpful.  06:13 Nikita: Ok, so ideally, we should use good data. But that’s a bit difficult in reality, right? Because what comes to us is often pretty messy. So, how do we convert bad data into good data? I’m sure there are processes we use to do this.  Himanshu: First one is cleaning. So this is about correcting simple mistakes, like fixing typos in city names or standardizing dates.  The second one is imputation. So if some values are missing, we fill them intelligently, for instance, using the average income for a missing salary field. Third one is filtering. In this, we remove irrelevant or noisy records, like discarding fake email signups from marketing data. The fourth one is enriching. We can even enhance our data by adding trusted external sources, like appending credit scores from a verified bureau.  And the last one is transformation. Here, we finally reshape data formats to be consistent, for example, converting all units to the same currency. So even messy data can become usable, but it takes deliberate effort, structured process, and attention to quality at every step.  07:26 Oracle University’s Race to Certification 2025 is your ticket to free training and certification in today’s hottest technology. Whether you’re starting with Artificial Intelligence, Oracle Cloud Infrastructure, Multicloud, or Oracle Data Platform, this challenge covers it all! Learn more about your chance to win prizes and see your name on the Leaderboard by visiting education.oracle.com/race-to-certification-2025. That’s education.oracle.com/race-to-certification-2025. 08:10 Nikita: Welcome back! Himanshu, we spoke about how to clean data. Now, once we get high-quality data, how do we analyze it?  Himanshu: In data science, there are four primary types of analysis we typically apply depending on the business goal we are trying to achieve.  The first one is descriptive analysis. It helps summarize and report what has happened. So often using averages, totals, or percentages. For example, retailers use descriptive analysis to understand things like what was the average customer spend last quarter? How did store foot traffic trend across months?  The second one is diagnostic analysis. Diagnostic analysis digs deeper into why something happened. For example, hospitals use this type of analysis to find out, for example, why a certain department has higher patient readmission rates. Was it due to staffing, post-treatment care, or patient demographics?  The third one is predictive analysis. Predictive analysis looks forward, trying to forecast future outcomes based on historical patterns. For example, energy companies predict future electricity demand, so they can better manage resources and avoid shortages. And the last one is prescriptive analysis. So it does not just predict. It recommends specific actions to take.  So logistics and supply chain companies use prescriptive analytics to suggest the most efficient delivery routes or warehouse stocking strategies based on traffic patterns, order volume, and delivery deadlines.   09:42 Lois: So really, we’re using data science to solve everyday problems. Can you walk us through some practical examples of how it’s being applied?  Himanshu: The first one is predictive maintenance. It is done in manufacturing a lot. A factory collects real time sensor data from machines. Data scientists first clean and organize this massive data stream, explore patterns of past failures, and design predictive models.  The goal is not just to predict breakdowns but to optimize maintenance schedules, reducing downtime and saving millions. The second one is a recommendation system. It's prevalent in retail and entertainment industries. Companies like Netflix or Amazon gather massive user interaction data such as views, purchases, likes.  Data scientists structure and analyze this behavioral data to find meaningful patterns of preferences and build models that suggest relevant content, eventually driving more engagement and loyalty. The third one is fraud detection. It's applied in finance and banking sector.  Banks store vast amounts of transaction record records. Data scientists clean and prepare this data, understand typical spending behaviors, and then use statistical techniques and machine learning to spot unusual patterns, catching fraud faster than manual checks could ever achieve.  The last one is customer segmentation, which is often applied in marketing. Businesses collect demographics and behavioral data about their customers. Instead of treating all the customers same, data scientists use clustering techniques to find natural groupings, and this insight helps businesses tailor their marketing efforts, offers, and communication for each of those individual groups, making them far more effective.  Across all these examples, notice that data science isn't just building a model. Again, it's understanding the business need, reviewing the data, analyzing it thoughtfully, and building the right solution while helping the business act smarter.  11:44 Lois: Thank you, Himanshu, for joining us on this episode of the Oracle University Podcast. We can’t wait to have you back next week for part 3 of this conversation on core AI concepts, where we’ll talk about generative AI and gen AI agents.     Nikita: And if you want to learn more about data science, visit mylearn.oracle.com and search for the AI for You course. Until next time, this is Nikita Abraham…  Lois: And Lois Houston signing off!  12:13 That’s all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We’d also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    12:42
  • Core AI Concepts – Part 1
    Join hosts Lois Houston and Nikita Abraham, along with Principal AI/ML Instructor Himanshu Raj, as they dive deeper into the world of artificial intelligence, analyzing the types of machine learning. They also discuss deep learning, including how it works, its applications, and its advantages and challenges. From chatbot assistants to speech-to-text systems and image recognition, they explore how deep learning is powering the tools we use today.   AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/252500   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ------------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:25 Lois: Hello and welcome to the Oracle University Podcast. I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services. Nikita: Hi everyone! Last week, we went through the basics of artificial intelligence. If you missed it, I really recommend listening to that episode before you start this one. Today, we’re going to explore some foundational AI concepts, starting with machine learning. After that, we’ll discuss the two main machine learning models: supervised learning and unsupervised learning. And we’ll close with deep learning. Lois: Himanshu Raj, our Principal AI/ML Instructor, joins us for today’s episode. Hi Himanshu! Let’s dive right in. What is machine learning?  01:12 Himanshu: Machine learning lets computers learn from examples to make decisions or predictions without being told exactly what to do. They help computers learn from past data and examples so they can spot patterns and make smart decisions just like humans do, but faster and at scale.  01:31 Nikita: Can you give us a simple analogy so we can understand this better? Himanshu: When you train a dog to sit or fetch, you don't explain the logic behind the command. Instead, you give this dog examples and reinforce correct behavior with rewards, which could be a treat, a pat, or a praise. Over time, the dog learns to associate the command with the action and reward. Machine learning learns in a similar way, but with data instead of dog treats. We feed a mathematical system called models with multiple examples of input and the desired output, and it learns the pattern. It's trial and error, learning from the experience.  Here is another example. Recognizing faces. Humans are incredibly good at this, even as babies. We don't need someone to explain every detail of the face. We just see many faces over time and learn the patterns. Machine learning models can be trained the same way. We showed them thousands or millions of face images, each labeled, and they start to detect patterns like eyes, nose, mouth, spacing, different angles. So eventually, they can recognize faces they have seen before or even match new ones that are similar. So machine learning doesn't have any rules, it's just learning from examples. This is the kind of learning behind things like face ID on your smartphone, security systems that recognizes employees, or even Facebook tagging people in your photos. 03:05 Lois: So, what you’re saying is, in machine learning, instead of telling the computer exactly what to do in every situation, you feed the model with data and give it examples of inputs and the correct outputs. Over time, the model figures out patterns and relationships within the data on its own, and it can make the smart guess when it sees something new. I got it! Now let’s move on to how machine learning actually works? Can you take us through the process step by step? Himanshu: Machine learning actually happens in three steps. First, we have the input, which is the training data. Think of this as showing the model a series of examples. It could be images of historical sales data or customer complaints, whatever we want the machine to learn from. Next comes the pattern finding. This is the brain of the system where the model starts spotting relationships in the data. It figures out things like customer who churn or leave usually contacts support twice in the same month. It's not given rules, it just learns patterns based on the example. And finally, we have output, which is the prediction or decision. This is the result of all this learning. Once trained, the computer or model can say this customer is likely to churn or leave. It's like having a smart assistant that makes fast, data-driven guesses without needing step by step instruction. 04:36 Nikita: What are the main elements in machine learning? Himanshu: In machine learning, we work with two main elements, features and labels. You can think of features as the clues we provide to the model, pieces of information like age, income, or product type. And the label is the solution we want the model to predict, like whether a customer will buy or not.  04:55 Nikita: Ok, I think we need an example here. Let’s go with the one you mentioned earlier about customers who churn. Himanshu: Imagine we have a table with data like customer age, number of visits, whether they churned or not. And each of these rows is one example. The features are age and visit count. The label is whether the customer churned, that is yes or no. Over the time, the model might learn patterns like customer under 30 who visit only once are more likely to leave. Or frequent visitors above age 45 rarely churn. If features are the clues, then the label is the solution, and the model is the brain of the system. It's what's the machine learning builds after learning from many examples, just like we do. And again, the better the features are, the better the learning. ML is just looking for patterns in the data we give it. 05:51 Lois: Ok, we’re with you so far. Let’s talk about the different types of machine learning. What is supervised learning? Himanshu: Supervised learning is a type of machine learning where the model learns from the input data and the correct answers. Once trained, the model can use what it learned to predict the correct answer for new, unseen inputs. Think of it like a student learning from a teacher. The teacher shows labeled examples like an apple and says, "this is an apple." The student receives feedback whether their guess was right or wrong. Over time, the student learns to recognize new apples on their own. And that's exactly how supervised learning works. It's learning from feedback using labeled data and then make predictions. 06:38 Nikita: Ok, so supervised learning means we train the model using labeled data. We already know the right answers, and we're essentially teaching the model to connect the dots between the inputs and the expected outputs. Now, can you give us a few real-world examples of supervised learning? Himanshu: First, house price prediction. In this case, we give the model features like a square footage, location, and number of bedrooms, and the label is the actual house price. Over time, it learns how to predict prices for new homes. The second one is email: spam or not. In this case, features might include words in the subject line, sender, or links in the email. The label is whether the email is spam or not. The model learns patterns to help us filter our inbox, as you would have seen in your Gmail inboxes. The third one is cat versus dog classification. Here, the features are the pixels in an image, and the label tells us whether it's a cat or a dog. After seeing many examples, the model learns to tell the difference on its own. Let's now focus on one very common form of supervised learning, that is regression. Regression is used when we want to predict a numerical value, not a category. In simple terms, it helps answer questions like, how much will it be? Or what will be the value be? For example, predicting the price of a house based on its size, location, and number of rooms. Or estimating next quarter's revenue based on marketing spend.  08:18 Lois: Are there any other types of supervised learning? Himanshu: While regression is about predicting a number, classification is about predicting a category or type. You can think of it as the model answering is this yes or no, or which group does this belong to.  Classification is used when the goal is to predict a category or a class. Here, the model learns patterns from historical data where both the input variables, known as features, and the correct categories, called labels, are already known.  08:53 Ready to level-up your cloud skills? The 2025 Oracle Fusion Cloud Applications Certifications are here! These industry-recognized credentials validate your expertise in the latest Oracle Fusion Cloud solutions, giving you a competitive edge and helping drive real project success and customer satisfaction. Explore the certification paths, prepare with MyLearn, and position yourself for the future. Visit mylearn.oracle.com to get started today. 09:25 Nikita: Welcome back! So that was supervised machine learning. What about unsupervised machine learning, Himanshu? Himanshu: Unlike supervised learning, here, the model is not given any labels or correct answers. It just handed the raw input data and left to make sense of it on its own.  The model explores the data and discovers hidden patterns, groupings, or structures on its own, without being explicitly told what to look for. And it's more like a student learning from observations and making their own inferences. 09:55 Lois: Where is unsupervised machine learning used? Can you take us through some of the use cases? Himanshu: The first one is product recommendation. Customers are grouped based on shared behavior even without knowing their intent. This helps show what the other users like you also prefer. Second one is anomaly detection. Unusual patterns, such as fraud, network breaches, or manufacturing defects, can stand out, all without needing thousands of labeled examples. And third one is customer segmentation. Customers can be grouped by purchase history or behavior to tailor experiences, pricing, or marketing campaigns. 10:32 Lois: And finally, we come to deep learning. What is deep learning, Himanshu? Himanshu: Humans learn from experience by seeing patterns repeatedly. Brain learns to recognize an image by seeing it many times. The human brain contains billions of neurons. Each neuron is connected to others through synapses. Neurons communicate by passing signals. The brain adjusts connections based on repeated stimuli. Deep learning was inspired by how the brain works using artificial neurons and connections. Just like our brains need a lot of examples to learn, so do the deep learning models. The more the layers and connections are, the more complex patterns it can learn. The brain is not hard-coded. It learns from patterns. Deep learning follows the same idea. Metaphorically speaking, a deep learning model can have over a billion neurons, more than a cat's brain, which have around 250 million neurons. Here, the neurons are mathematical units, often called nodes, or simply as units. Layers of these units are connected, mimicking how biological neurons interact. So deep learning is a type of machine learning where the computer learns to understand complex patterns. What makes it special is that it uses neural networks with many layers, which is why we call it deep learning. 11:56 Lois: And how does deep learning work? Himanshu: Deep learning is all about finding high-level meaning from low-level data layer by layer, much like how our brains process what we see and hear. A neural network is a system of connected artificial neurons, or nodes, that work together to learn patterns and make decisions.  12:15 Nikita: I know there are different types of neural networks, with ANNs or Artificial Neural Networks being the one for general learning. How is it structured? Himanshu: There is an input layer, which is the raw data, which could be an image, sentence, numbers, a hidden layer where the patterns are detected or the features are learned, and the output layer where the final decision is made. For example, given an image, is this a dog? A neural network is like a team of virtual decision makers, called artificial neurons, or nodes, working together, which takes input data, like a photo, and passes it through layers of neurons. And each neuron makes a small judgment and passes its result to the next layer.  This process happens across multiple layers, learning more and more complex patterns as it goes, and the final layer gives the output. Imagine a factory assembly line where each station, or the layer, refines the input a bit more. By the end, you have turned raw parts into something meaningful. And this is a very simple analogy. This structure forms the foundations of many deep learning models.  More advanced architectures, like convolutional neural networks, CNNs, for images, or recurrent neural networks, RNN, for sequences built upon this basic idea. So, what I meant is that the ANN is the base structure, like LEGO bricks. CNNs and RNNs use those same bricks, but arrange them in a way that are better suited for images, videos, or sequences like text or speech.  13:52 Nikita: So, why do we call it deep learning? Himanshu: The word deep in deep learning does not refer to how profound or intelligent the model is. It actually refers to the number of layers in the neural network. It starts with an input layer, followed by hidden layers, and ends with an output layer. The layers are called hidden, in the sense that these are black boxes and their data is not visible or directly interpretable to the user. Models which has only one hidden layer is called shallow learning. As data moves, each layer builds on what the previous layer has learned. So layer one might detect a very basic feature, like edges or colors in an image. Layer two can take those edges and starts forming shapes, like curves or lines. And layer three use those shapes to identify complete objects, like a face, a car, or a person. This hierarchical learning is what makes deep learning so powerful. It allows the model to learn abstract patterns and generalize across complex data, whether it's visual, audio, or even language. And that's the essence of deep learning. It's not just about layers. It's about how each layer refines the information and one step closer to understanding. 15:12 Nikita: Himanshu, where does deep learning show up in our everyday lives? Himanshu: Deep learning is not just about futuristic robots, it's already powering the tools we use today. So think of when you interact with a virtual assistant on a website. Whether you are booking a hotel, resolving a banking issue, or asking customer support questions, behind the scenes, deep learning models understand your text, interpret your intent, and respond intelligently. There are many real-life examples, for example, ChatGPT, Google's Gemini, any airline website’s chatbots, bank's virtual agent. The next one is speech-to-text systems. Example, if you have ever used voice typing on your phone, dictated a message to Siri, or used Zoom's live captions, you have seen this in action already. The system listens to your voice and instantly converts it into a text. And this saves time, enhances accessibility, and helps automate tasks, like meeting transcriptions. Again, you would have seen real-life examples, such as Siri, Google Assistant, autocaptioning on Zoom, or YouTube Live subtitles. And lastly, image recognition. For example, hospitals today use AI to detect early signs of cancer in x-rays and CT scans that might be missed by the human eye. Deep learning models can analyze visual patterns, like a suspicious spot on a lung's X-ray, and flag abnormalities faster and more consistently than humans. Self-driving cars recognize stop signs, pedestrians, and other vehicles using the same technology. So, for example, cancer detection in medical imaging, Tesla's self-driving navigation, security system synchronizes face are very prominent examples of image recognition. 17:01 Lois: Deep learning is one of the most powerful tools we have today to solve complex problems. But like any tool, I’m sure it has its own set of pros and cons. What are its advantages, Himanshu? Himanshu: It is high accuracy. When trained with enough data, deep learning models can outperform humans. For example, again, spotting early signs of cancer in X-rays with higher accuracy. Second is handling of unstructured data. Deep learning shines when working with messy real-world data, like images, text, and voice. And it's why your phone can recognize your face or transcribe your speech into text. The third one is automatic pattern learning. Unlike traditional models that need hand-coded features, deep learning models figure out important patterns by themselves, making them extremely flexible. And the fourth one is scalability. Once trained, deep learning systems can scale easily, serving millions of customers, like Netflix recommending movies personalized to each one of us. 18:03 Lois: And what about its challenges? Himanshu: The first one is data and resource intensive. So deep learning demands huge amount of labeled data and powerful computing hardware, which means high cost, especially during training. The second thing is lacks explainability. These models often act like a black box. We know the output, but it's hard to explain exactly how the model reached that decision. This becomes a problem in areas like health care and finance where transparency is critical. The third challenge is vulnerability to bias. If the data contains biases, like favoring certain groups, the model will learn and amplify those biases unless we manage them carefully. The fourth and last challenge is it's harder to debug and maintain. Unlike a traditional software program, it's tough to manually correct a deep learning model if it starts behaving unpredictably. It requires retraining with new data. So deep learning offers powerful opportunities to solve complex problems using data, but it also brings challenges that require careful strategy, resources, and responsible use. 19:13 Nikita: We’re taking away a lot from this conversation. Thank you so much for your insights, Himanshu.  Lois: If you’re interested to learn more, make sure you log into mylearn.oracle.com and look for the AI for You course. Join us next week for part 2 of the discussion on AI Concepts & Terminology, where we’ll focus on Data Science. Until then, this is Lois Houston… Nikita: And Nikita Abraham signing off! 19:39 That’s all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We’d also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    20:08

Mais podcasts de Ensino

Sobre Oracle University Podcast

Oracle University Podcast delivers convenient, foundational training on popular Oracle technologies such as Oracle Cloud Infrastructure, Java, Autonomous Database, and more to help you jump-start or advance your career in the cloud.
Site de podcast

Ouça Oracle University Podcast, Inglês Todos os Dias e muitos outros podcasts de todo o mundo com o aplicativo o radio.net

Obtenha o aplicativo gratuito radio.net

  • Guardar rádios e podcasts favoritos
  • Transmissão via Wi-Fi ou Bluetooth
  • Carplay & Android Audo compatìvel
  • E ainda mais funções

Oracle University Podcast: Podcast do grupo

Aplicações
Social
v7.23.7 | © 2007-2025 radio.de GmbH
Generated: 9/14/2025 - 3:07:54 AM