Nick Gillian is the Co-Founder and CTO at Archetype AI, working on physical AI foundation models that understand and reason over real-world sensor data.
Physical AI: Teaching Machines to Understand the Real World // MLOps Podcast #360 with Nick Gillian, Co-Founder and CTO of Archetype AI
Join the Community:
https://go.mlops.community/YTJoinIn
Get the newsletter: https://go.mlops.community/YTNewsletter
MLOps GPU Guide: https://go.mlops.community/gpuguide
/ Abstract
As AI moves beyond the cloud and simulation, the next frontier is Physical AI: systems that can perceive, understand, and act within real-world environments in real time. In this conversation, Nick Gillian, Co-Founder and CTO of Archetype AI, explores what it actually takes to turn raw sensor and video data into reliable, deployable intelligence.
Drawing on his experience building Google’s Soli and Jacquard and now leading development of Newton, a foundational model for Physical AI, Nick discusses how real-time physical understanding changes what’s possible across safety monitoring, infrastructure, and human–machine interaction. He’ll share lessons learned translating advanced research into products that operate safely in dynamic environments, and why many organizations underestimate the challenges and opportunities of AI in the physical world.
// Bio
Nick Gillian, Ph.D., is Co-Founder and CTO of Archetype AI with over 15 years of experience turning advanced AI and interaction research into real-world products. At Archetype, he leads the AI and engineering teams behind Newton—a first-of-its-kind Physical AI foundational model that can perceive, understand, and reason about the physical world. Before co-founding Archetype, Nick was a Senior Staff Machine Learning Engineer at Google and a researcher at MIT, where he developed AI and ML methods for real-time sensor understanding. At Google’s Advanced Technology and Projects group, he led machine learning research that powered breakthrough products like Soli radar and Jacquard, and helped advance sensing algorithms across Pixel, Nest, and wearable devices.
// Related Links
Website: https://www.archetypeai.io/https://www.archetypeai.io/blog/timefusion-newton https://www.nature.com/articles/s41598-023-44714-2https://www.youtube.com/watch?v=Pow4utY9teU https://www.youtube.com/watch?v=uE0jjdzwe9w https://arxiv.org/abs/2410.14724
Coding Agents Conference: https://luma.com/codingagents
~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~
Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore
Join our Slack community [https://go.mlops.community/slack]
Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)]
Sign up for the next meetup: [https://go.mlops.community/register]
MLOps Swag/Merch: [https://shop.mlops.community/]
Connect with Demetrios on LinkedIn: /dpbrinkm
Connect with Nick on LinkedIn: /nick-gillian-b27b1094/
Timestamps:[00:00] Physical Agent Framework[00:56] Physical AI Clarification[06:53] Building a Repair Model[12:41] World Models and LLMs[17:17] Data Weighting Strategies[24:19] Data Diversity vs Quantity[38:30] R&D and Product Creation[41:22] Construction Site Data Shipping[50:33] Wrap up