The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Sam Charrington
Machine learning and artificial intelligence are dramatically changing the way businesses operate and people live. The TWIML AI Podcast brings the top minds and...
Why Agents Are Stupid & What We Can Do About It with Dan Jeffries - #713
Today, we're joined by Dan Jeffries, founder and CEO of Kentauros AI to discuss the challenges currently faced by those developing advanced AI agents. We dig into how Dan defines agents and distinguishes them from other similar uses of LLM, explore various use cases for them, and dig into ways to create smarter agentic systems. Dan shared his “big brain, little brain, tool brain” approach to tackling real-world challenges in agents, the trade-offs in leveraging general-purpose vs. task-specific models, and his take on LLM reasoning. We also cover the way he thinks about model selection for agents, along with the need for new tools and platforms for deploying them. Finally, Dan emphasizes the importance of open source in advancing AI, shares the new products they’re working on, and explores the future directions in the agentic era.
The complete show notes for this episode can be found at https://twimlai.com/go/713.
--------
1:08:49
Automated Reasoning to Prevent LLM Hallucination with Byron Cook - #712
Today, we're joined by Byron Cook, VP and distinguished scientist in the Automated Reasoning Group at AWS to dig into the underlying technology behind the newly announced Automated Reasoning Checks feature of Amazon Bedrock Guardrails. Automated Reasoning Checks uses mathematical proofs to help LLM users safeguard against hallucinations. We explore recent advancements in the field of automated reasoning, as well as some of the ways it is applied broadly, as well as across AWS, where it is used to enhance security, cryptography, virtualization, and more. We discuss how the new feature helps users to generate, refine, validate, and formalize policies, and how those policies can be deployed alongside LLM applications to ensure the accuracy of generated text. Finally, Byron also shares the benchmarks they’ve applied, the use of techniques like ‘constrained coding’ and ‘backtracking,’ and the future co-evolution of automated reasoning and generative AI.
The complete show notes for this episode can be found at https://twimlai.com/go/712.
--------
56:48
AI at the Edge: Qualcomm AI Research at NeurIPS 2024 with Arash Behboodi - #711
Today, we're joined by Arash Behboodi, director of engineering at Qualcomm AI Research to discuss the papers and workshops Qualcomm will be presenting at this year’s NeurIPS conference. We dig into the challenges and opportunities presented by differentiable simulation in wireless systems, the sciences, and beyond. We also explore recent work that ties conformal prediction to information theory, yielding a novel approach to incorporating uncertainty quantification directly into machine learning models. Finally, we review several papers enabling the efficient use of LoRA (Low-Rank Adaptation) on mobile devices (Hollowed Net, ShiRA, FouRA). Arash also previews the demos Qualcomm will be hosting at NeurIPS, including new video editing diffusion and 3D content generation models running on-device, Qualcomm's AI Hub, and more!
The complete show notes for this episode can be found at https://twimlai.com/go/711.
--------
54:47
AI for Network Management with Shirley Wu - #710
Today, we're joined by Shirley Wu, senior director of software engineering at Juniper Networks to discuss how machine learning and artificial intelligence are transforming network management. We explore various use cases where AI and ML are applied to enhance the quality, performance, and efficiency of networks across Juniper’s customers, including diagnosing cable degradation, proactive monitoring for coverage gaps, and real-time fault detection. We also dig into the complexities of integrating data science into networking, the trade-offs between traditional methods and ML-based solutions, the role of feature engineering and data in networking, the applicability of large language models, and Juniper’s approach to using smaller, specialized ML models to optimize speed, latency, and cost. Finally, Shirley shares some future directions for Juniper Mist such as proactive network testing and end-user self-service.
The complete show notes for this episode can be found at https://twimlai.com/go/710.
--------
53:44
Why Your RAG System Is Broken, and How to Fix It with Jason Liu - #709
Today, we're joined by Jason Liu, freelance AI consultant, advisor, and creator of the Instructor library to discuss all things retrieval-augmented generation (RAG). We dig into the tactical and strategic challenges companies face with their RAG system, the different signs Jason looks for to identify looming problems, the issues he most commonly encounters, and the steps he takes to diagnose these issues. We also cover the significance of building out robust test datasets, data-driven experimentation, evaluation tools, and metrics for different use cases. We also touched on fine-tuning strategies for RAG systems, the effectiveness of different chunking strategies, the use of collaboration tools like Braintrust, and how future models will change the game. Lastly, we cover Jason’s interest in teaching others how to capitalize on their own AI experience via his AI consulting course.
The complete show notes for this episode can be found at https://twimlai.com/go/709.
Sobre The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Machine learning and artificial intelligence are dramatically changing the way businesses operate and people live. The TWIML AI Podcast brings the top minds and ideas from the world of ML and AI to a broad and influential community of ML/AI researchers, data scientists, engineers and tech-savvy business and IT leaders. Hosted by Sam Charrington, a sought after industry analyst, speaker, commentator and thought leader. Technologies covered include machine learning, artificial intelligence, deep learning, natural language processing, neural networks, analytics, computer science, data science and more.
Ouça The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence), MacMagazine no Ar e muitos outros podcasts de todo o mundo com o aplicativo o radio.net