Powered by RND
PodcastsCiênciaChoses à Savoir SCIENCES

Choses à Savoir SCIENCES

Choses à Savoir
Choses à Savoir SCIENCES
Último episódio

Episódios Disponíveis

5 de 2362
  • Pourquoi l'année 1582 a-t-elle subi une amputation temporelle ?
    Si vous vous amusez à faire défiler le calendrier de votre smartphone jusqu’en octobre 1582, un détail vous sautera aux yeux : le 4 octobre est immédiatement suivi… du 15 octobre. Onze jours qui semblent avoir disparu. Mais ce n’est ni un bug informatique, ni une plaisanterie de développeur. C’est l’héritage d’une véritable amputation temporelle, décidée en pleine Renaissance par le pape Grégoire XIII.Pour comprendre ce saut dans le temps, il faut revenir au calendrier utilisé en Europe depuis l’Empire romain : le calendrier julien, instauré par Jules César en 46 av. J.-C. Ce calendrier prévoyait une année de 365,25 jours, avec un jour bissextile tous les quatre ans. Problème : l’année solaire réelle — c’est-à-dire le temps que met la Terre à faire un tour complet autour du Soleil — dure en réalité 365,2422 jours. Une petite différence, mais qui, au fil des siècles, finit par décaler le calendrier par rapport aux saisons.Résultat : au 16e siècle, l’équinoxe de printemps, censé tomber le 21 mars, se produisait désormais autour du 11 mars. Ce glissement avait des conséquences concrètes, notamment sur la fixation de la date de Pâques, essentielle dans le calendrier chrétien.Pour y remédier, le pape Grégoire XIII convoqua des astronomes et des mathématiciens, dont le célèbre Luigi Lilio. Leur solution : instaurer un nouveau calendrier, plus précis, que l’on connaît aujourd’hui sous le nom de calendrier grégorien. Ce nouveau système corrigeait le décalage en ajustant la règle des années bissextiles : désormais, les années séculaires (comme 1700, 1800, 1900) ne seraient bissextiles que si elles sont divisibles par 400.Mais il restait un problème immédiat : comment rattraper les dix jours déjà accumulés ? La solution fut radicale : supprimer purement et simplement 10 jours du calendrier. Le pape promulgua donc la bulle Inter gravissimas, qui imposait qu’après le jeudi 4 octobre 1582, on passerait directement au vendredi 15 octobre.Ce changement fut d’abord adopté par les pays catholiques — Espagne, Portugal, États pontificaux, Pologne. Les pays protestants ou orthodoxes mirent parfois plusieurs siècles à suivre. En Russie, par exemple, le calendrier julien resta en vigueur jusqu’en… 1918.En résumé : l’amputation du mois d’octobre 1582 est le fruit d’une grande réforme temporelle, destinée à réaligner notre calendrier sur les rythmes célestes. Un saut temporel qui rappelle que même le temps que nous croyons si rigide… peut être redéfini par décision humaine. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:50
  • Pourquoi la couleur des arbres permet-elle de prévoir une éruption volcanique ?
    Peut-on prévoir une éruption volcanique… en observant la couleur des arbres ? Cela peut sembler étonnant, mais c’est une piste que les scientifiques explorent de plus en plus sérieusement. Une équipe internationale a récemment démontré qu’avant certaines éruptions, les forêts autour des volcans deviennent visiblement plus vertes — un changement subtil, mais détectable depuis l’espace.Le mécanisme derrière ce phénomène est lié aux gaz volcaniques. Bien avant qu’un volcan n’entre en éruption, son activité interne augmente. Des fissures apparaissent, laissant s’échapper des gaz invisibles, notamment du dioxyde de carbone (CO₂). Ce gaz lourd s’infiltre dans le sol, où il se dissout partiellement dans l’eau souterraine, modifiant ainsi la chimie locale.Pour les arbres, cet excès de CO₂ dans le sol agit comme un fertilisant naturel. En effet, le dioxyde de carbone est l’un des éléments clés de la photosynthèse. Lorsqu’il devient plus abondant, les arbres accélèrent leur production de biomasse : leurs feuilles deviennent plus denses, leur taux de chlorophylle augmente, et la canopée prend une teinte plus intense de vert.Ce changement n’est pas toujours visible à l’œil nu, mais les satellites équipés de capteurs multispectraux ou hyperspectraux peuvent le détecter. Ces instruments mesurent précisément la réflexion de la lumière par la végétation, notamment dans les longueurs d’onde associées à la chlorophylle.Des études récentes, notamment sur le volcan Taal aux Philippines et le Mount Etna en Italie, ont montré que ces "signatures vertes" peuvent apparaître plusieurs semaines à plusieurs mois avant une éruption. Ce signal, couplé à d’autres indicateurs — comme les séismes, la déformation du sol ou l’émission de gaz — permet d’affiner les modèles de prévision.Ce qui rend cette approche si précieuse, c’est qu’elle offre une vue d’ensemble : grâce aux satellites, on peut surveiller en continu des zones entières, même inaccessibles ou dangereuses. Cela permet de repérer des anomalies précoces et de déclencher des alertes.Bien sûr, le verdissement des forêts n’est qu’un indice parmi d’autres. Un changement de couleur ne signifie pas à lui seul qu’une éruption est imminente. Mais intégré à un système global de surveillance, il devient un signal d’alerte précieux, surtout dans les régions densément peuplées autour des volcans.En résumé : en devenant plus verts sous l’effet du CO₂ volcanique, les arbres jouent, à leur manière, le rôle de sentinelles naturelles. Grâce aux satellites, les scientifiques peuvent aujourd’hui écouter ces signaux silencieux… et peut-être sauver des vies. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:11
  • Pourquoi la TTV permet-elle de repérer des planètes indétectables ?
    La TTV, pour Transit Timing Variation — ou en français, "variation du moment du transit" — est une technique de pointe qui permet de détecter des exoplanètes jusque-là invisibles aux méthodes classiques.Pour bien comprendre, rappelons d’abord la méthode dite du transit : quand une planète passe devant son étoile (vue depuis la Terre), elle bloque une petite partie de la lumière de cette étoile. En mesurant cette baisse de luminosité, les astronomes peuvent repérer la planète et déduire des informations comme sa taille et son orbite. C’est ainsi qu’ont été détectées des milliers d’exoplanètes.Mais certaines planètes échappent à cette méthode : elles ne passent pas exactement devant leur étoile, ou leur signal est trop faible. C’est là que la TTV entre en jeu.Voici le principe : dans un système avec plusieurs planètes, celles-ci s’influencent mutuellement par leur gravité. Résultat : la planète dont on observe le transit ne passe pas toujours devant son étoile au même moment précis à chaque orbite. Il peut y avoir de légères variations — par exemple, quelques secondes ou quelques minutes d’avance ou de retard par rapport au calendrier prévu.Ces infimes décalages révèlent la présence d’une ou plusieurs autres planètes dans le système, même si elles ne transitent pas elles-mêmes !En étudiant soigneusement ces variations de timing, les chercheurs peuvent déduire l’existence, la masse et même la position de ces planètes cachées.C’est précisément ce qu’a réussi une équipe de l’Académie chinoise des sciences en 2024. En utilisant la TTV, ils ont découvert une nouvelle exoplanète située dans la zone habitable d’une étoile semblable au Soleil — c’est-à-dire à une distance où l’eau liquide pourrait exister. Cette planète, sans la TTV, aurait été indétectable par les moyens classiques.Pourquoi cette méthode révolutionne-t-elle l’astronomie ? Parce qu’elle permet :de révéler des planètes non transitées, donc invisibles à la méthode du transit ;de mesurer leur masse, ce que le simple transit ne permet pas de faire directement ;de sonder des systèmes complexes, avec plusieurs planètes en interaction.En résumé, la TTV est un outil ultra-précieux pour explorer des mondes lointains et comprendre la dynamique des systèmes planétaires. Elle ouvre une nouvelle fenêtre sur des planètes jusque-là invisibles — et peut-être, un jour, sur des mondes habitables. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:04
  • Les gauchers sont-ils meilleurs en sport ?
    La croyance populaire veut que les gauchers soient "meilleurs" en sport. La réalité scientifique est plus nuancée. Voici ce que disent les études :1. Les gauchers sont surreprésentés dans certains sportsUne méta-analyse de 2019 publiée dans Psychological Research (Loffing & Hagemann, 2019) montre que les gauchers sont bien plus nombreux que dans la population générale dans certains sports d’opposition où le temps de réaction est limité — par exemple en boxe, escrime, tennis de table ou baseball.Dans la population générale, les gauchers représentent environ 10 %.Dans ces sports-là, leur proportion grimpe parfois à 30-50 % chez les meilleurs niveaux.2. Pourquoi cet avantage ?Ce n’est pas que les gauchers sont plus "forts", mais qu’ils créent une asymétrie inattendue :La majorité des sportifs sont droitiers, donc s’entraînent surtout contre des droitiers.Quand ils affrontent un gaucher, ils sont moins préparés → effet de surprise.Le gaucher, lui, affronte en permanence des droitiers : il a donc développé des stratégies adaptées.Cela s'appelle l'avantage de fréquence négative : un avantage qui diminue si le nombre de gauchers augmente.3. Pas d’avantage physiologique globalAttention : aucune étude solide ne montre que les gauchers ont de meilleurs temps de réaction ou des capacités motrices supérieures en moyenne.Par exemple, une étude de 2021 dans Brain and Cognition (Peters et al.) montre que la latéralité manuelle n’influence pas de manière générale :la vitesse d’exécution,la précision,la coordination motrice.C’est donc bien un avantage contextuel, pas biologique.ConclusionScientifiquement, on ne peut pas dire que les gauchers sont "meilleurs en sport" de manière générale.Mais dans les sports d’opposition à fort enjeu temporel (boxe, escrime, tennis, baseball, tennis de table...), leur rareté leur procure un véritable avantage tactique — ce que les études confirment. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    1:50
  • Pourquoi certains métaux peuvent-ils avoir une barbe ?
    Dans le monde de la science des matériaux, il existe un phénomène aussi fascinant que redouté : la "barbe métallique", ou "whisker" en anglais. Imaginez de minuscules filaments, semblables à des poils d’acier, qui se mettent à pousser spontanément à la surface de certains métaux ou alliages. Un phénomène discret, encore mal compris, mais qui peut provoquer des dégâts considérables dans l’industrie électronique.Ces fameuses barbes apparaissent principalement sur des métaux comme l’étain, le zinc, le cadmium, ou encore l’argent. Leur formation résulte d’un phénomène cristallographique complexe. Sous certaines conditions, le métal va littéralement faire pousser des filaments ultra-fins et longs, qui peuvent atteindre plusieurs millimètres, voire davantage.Mais comment cela se produit-il ? C’est là que le mystère commence. Les scientifiques pensent que ces barbes naissent d’un phénomène de contrainte interne dans le matériau. Lorsque le métal subit un stress mécanique, thermique ou chimique — par exemple après un dépôt de couche mince, un vieillissement ou une oxydation partielle — des déséquilibres se créent dans son réseau cristallin. Pour soulager ces contraintes, les atomes du métal migrent peu à peu vers la surface et s’assemblent en filaments, comme si le métal cherchait à "évacuer" son trop-plein d’énergie.Ce phénomène reste encore partiellement inexpliqué. On sait que l’humidité de l’air, les impuretés du métal ou les traitements de surface peuvent influencer la croissance des barbes, mais il n’existe pas encore de modèle prédictif universel. C’est un véritable casse-tête pour les ingénieurs en fiabilité des composants électroniques.Car si ces barbes métalliques peuvent paraître anecdotiques à l’œil nu, leurs conséquences sont bien réelles. Dans un circuit imprimé, par exemple, un filament d’étain peut traverser l’espace entre deux pistes conductrices et provoquer un court-circuit brutal. Des cas célèbres de défaillances de satellites, de systèmes militaires ou de télécommunications ont été attribués à ces minuscules barbes invisibles.Le problème s’est accentué depuis les restrictions sur l’utilisation du plomb dans les alliages électroniques. Autrefois, le plomb ajoutait une certaine souplesse et limitait la formation de whiskers dans les soudures à l’étain. Aujourd’hui, avec les alliages sans plomb, les ingénieurs redoublent de vigilance face à ce phénomène.En résumé, la "barbe métallique" est un exemple parfait de ces phénomènes discrets mais redoutables qui émergent dans le monde des matériaux. Une simple pousse de quelques microns… qui peut suffire à faire tomber un satellite en panne. La recherche continue pour mieux comprendre et contrôler cette étrange pilosité des métaux. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:40

Mais podcasts de Ciência

Sobre Choses à Savoir SCIENCES

Développez facilement votre culture scientifique grâce à un podcast quotidien ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Site de podcast

Ouça Choses à Savoir SCIENCES, Alô, Ciência? e muitos outros podcasts de todo o mundo com o aplicativo o radio.net

Obtenha o aplicativo gratuito radio.net

  • Guardar rádios e podcasts favoritos
  • Transmissão via Wi-Fi ou Bluetooth
  • Carplay & Android Audo compatìvel
  • E ainda mais funções

Choses à Savoir SCIENCES: Podcast do grupo

Aplicações
Social
v7.18.7 | © 2007-2025 radio.de GmbH
Generated: 6/26/2025 - 2:04:31 PM