PodcastsCiênciaChoses à Savoir SCIENCES

Choses à Savoir SCIENCES

Choses à Savoir
Choses à Savoir SCIENCES
Último episódio

2474 episódios

  • Choses à Savoir SCIENCES

    Par où fond l'Antarctique ?

    04/2/2026 | 2min
    Quand on imagine la fonte de l’Antarctique, on pense spontanément à une glace qui disparaît par le dessus, sous l’effet de l’air plus chaud. Pourtant, la réalité est plus complexe : l’Antarctique fond en grande partie par le dessous. Et ce processus discret, invisible depuis la surface, joue un rôle majeur dans l’accélération de la perte de glace.

    La calotte glaciaire antarctique repose sur un socle rocheux irrégulier. Dans de nombreuses régions, ce socle se situe même sous le niveau de la mer. Entre la roche et la glace circule de l’eau liquide, formant un immense réseau de rivières et de lacs sous-glaciaires. Cette eau provient principalement de deux sources : la chaleur géothermique émise par la Terre et la pression énorme exercée par la glace elle-même, qui abaisse le point de fusion.

    Cette fine couche d’eau agit comme un lubrifiant. Elle réduit la friction entre la glace et le sol, permettant aux glaciers de glisser plus facilement vers l’océan. Plus l’eau est abondante, plus la glace se déplace rapidement. Et lorsque ces glaciers atteignent la mer, ils contribuent directement à l’élévation du niveau des océans.

    À cela s’ajoute un autre mécanisme clé : l’intrusion d’eaux océaniques relativement chaudes sous les plateformes de glace flottantes. Autour de l’Antarctique, certaines masses d’eau profondes sont quelques degrés plus chaudes que l’eau de surface. Elles s’infiltrent sous les plateformes glaciaires et provoquent une fonte basale, c’est-à-dire par le dessous. Ce phénomène amincit la glace, la fragilise et facilite le détachement d’icebergs.

    Longtemps, ces processus ont été difficiles à quantifier, car ils se déroulent sous plusieurs kilomètres de glace. Mais des chercheurs ont récemment développé un modèle informatique de nouvelle génération capable de simuler, à l’échelle du continent entier, la circulation de l’eau sous-glaciaire et son interaction avec le mouvement de la glace. Ce modèle combine données satellitaires, topographie du socle, température, pression et dynamique des glaciers.

    Les résultats montrent que l’eau sous-glaciaire ne s’écoule pas au hasard. Elle suit des chemins organisés, influencés par les pentes du terrain et l’épaisseur de la glace. Ces flux contrôlent directement la vitesse des glaciers. Dans certaines régions, un léger changement dans la distribution de l’eau peut suffire à accélérer fortement l’écoulement vers la mer.

    En résumé, l’Antarctique ne fond pas seulement en surface : il fond par en dessous, sous l’effet conjoint de la chaleur interne de la Terre et des eaux océaniques plus chaudes. Comprendre ces mécanismes est essentiel, car ils conditionnent la stabilité future de la calotte glaciaire et donc l’ampleur de la montée des océans dans les décennies à venir.
    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
  • Choses à Savoir SCIENCES

    Pourquoi les objets se brisent-ils de la même façon ?

    03/2/2026 | 2min
    Lorsqu’un objet se brise, notre impression immédiate est celle du chaos : des morceaux de tailles variées, projetés dans toutes les directions, sans logique apparente. Pourtant, qu’il s’agisse d’un verre qui éclate, d’un sucre que l’on écrase ou d’une bulle de savon qui disparaît, ces phénomènes obéissent à des règles étonnamment similaires. C’est ce que révèle une avancée récente en physique : la fragmentation suit une loi universelle.

    Pour comprendre cela, il faut d’abord s’intéresser à la notion de contraintes internes. Tous les matériaux, même les plus solides, contiennent des défauts microscopiques : fissures invisibles, zones plus fragiles, irrégularités dans leur structure. Lorsqu’une force est appliquée — choc, pression, tension — l’énergie se propage dans l’objet sous forme d’ondes mécaniques. Ces ondes se concentrent naturellement autour des défauts, où la rupture commence.

    Ce qui est remarquable, c’est que la façon dont l’énergie se répartit dans le matériau détermine directement la taille et le nombre des fragments produits. Un physicien français a récemment proposé une équation capable de décrire cette répartition, quel que soit l’objet étudié. Verre, céramique, sucre, métal mince ou même bulles de liquide : tous suivent la même courbe statistique.

    Cette courbe montre que les petits fragments sont toujours très nombreux, tandis que les gros morceaux sont beaucoup plus rares. Autrement dit, il existe une relation mathématique stable entre la taille d’un fragment et sa probabilité d’apparition. Ce type de relation est appelé une loi d’échelle : on retrouve la même forme de distribution, que l’on casse un grain de sucre ou un bloc de roche.

    Pourquoi une telle universalité ? Parce que, au moment de la rupture, le matériau n’« hésite » pas. Dès que la contrainte dépasse un seuil critique, un réseau de fissures se propage à grande vitesse, se ramifie et se croise. Ce processus de propagation est gouverné par des équations fondamentales de la mécanique et de la physique des matériaux, indépendantes de la nature précise de l’objet.

    Même une bulle de savon suit cette logique. Lorsqu’elle éclate, la fine membrane liquide se déchire en multiples filaments, qui se fragmentent à leur tour en microgouttelettes. Là encore, la distribution des tailles des gouttes correspond à la même loi que celle observée pour des solides.

    Cette découverte a des implications concrètes. Elle permet d’améliorer la conception de matériaux résistants aux chocs, de mieux comprendre l’érosion des roches, ou encore d’optimiser des procédés industriels comme le broyage et le concassage.

    En résumé, si un objet semble se briser « toujours de la même façon », ce n’est pas par hasard. Derrière le désordre visible se cache un ordre mathématique profond : une loi universelle de la fragmentation, qui révèle que le chaos, en physique, est souvent bien plus organisé qu’il n’y paraît.
    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
  • Choses à Savoir SCIENCES

    Où Dieu se trouve-t-il dans l'Univers ?

    02/2/2026 | 2min
    La question « Où se trouve Dieu dans l’Univers ? » traverse l’histoire humaine depuis des millénaires. Religieuse, philosophique, mais aussi scientifique, elle touche à notre besoin profond de situer l’infini dans un cadre compréhensible. Récemment, un ancien physicien de Harvard, le Dr Michael Guillén, a relancé le débat en avançant une idée spectaculaire : Dieu pourrait avoir une localisation précise dans l’espace.

    Selon lui, des calculs issus de modèles cosmologiques conduiraient à situer Dieu à environ 439 milliards de milliards de kilomètres de la Terre, une distance vertigineuse qui dépasse largement notre capacité d’imagination. L’argument repose sur une réflexion autour des limites observables de l’Univers et de l’idée qu’au-delà de ce que nous pouvons mesurer, il existerait une frontière ultime, assimilée à un point d’origine ou de transcendance.

    Cette proposition intrigue, car elle semble donner une « adresse » à une entité traditionnellement décrite comme immatérielle, éternelle et omniprésente. Or, c’est précisément là que le problème apparaît.

    Du point de vue de la physique moderne, l’Univers n’est pas une structure fixe avec un centre clairement défini. Depuis les travaux d’Edwin Hubble au XXᵉ siècle, nous savons que l’Univers est en expansion : toutes les galaxies s’éloignent les unes des autres. Mais cette expansion ne part pas d’un point central comme une explosion classique. Chaque région de l’espace s’étire, ce qui signifie qu’il n’existe pas de « milieu » absolu de l’Univers.

    Autrement dit, parler d’un endroit précis où se situerait Dieu pose une difficulté majeure : l’espace lui-même est en mouvement, et ses dimensions évoluent constamment. Une distance calculée aujourd’hui n’aurait donc pas de valeur fixe dans le temps cosmique.

    De plus, la science ne peut étudier que ce qui est mesurable. Les instruments observent des particules, des champs, de l’énergie. Dieu, par définition théologique, échappe à ces catégories. Le placer quelque part dans l’espace revient à le transformer en objet physique, ce qui contredit la conception dominante des grandes religions, pour lesquelles Dieu est hors de l’espace et du temps.

    L’hypothèse de Michael Guillén peut alors être comprise moins comme une affirmation scientifique stricte que comme une métaphore : une tentative de traduire en langage mathématique une idée spirituelle, celle d’un principe premier situé au-delà du monde observable.

    Finalement, la science répond surtout à une chose : elle ne sait pas localiser Dieu. Elle peut décrire l’âge de l’Univers, sa taille approximative, ses lois fondamentales, mais elle s’arrête aux portes du sens ultime.

    La question « Où est Dieu ? » demeure donc, pour l’instant, du domaine de la foi et de la philosophie. Peut-être que, plutôt que d’être quelque part dans l’Univers, Dieu serait — pour ceux qui y croient — ce qui rend l’Univers possible.
    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
  • Choses à Savoir SCIENCES

    Pourquoi les neurones pourraient servir de carte d'identité ?

    01/2/2026 | 2min
    Et si, demain, votre mot de passe le plus sûr n’était plus votre visage, votre doigt… mais votre cerveau ? Cette idée, qui relevait encore récemment de la science-fiction, est en train de devenir une réalité grâce à un nouveau champ de recherche : l’identification neuronale.

    L’identification neuronale repose sur un principe simple en apparence : chaque cerveau produit une activité électrique unique. Lorsque nous pensons, regardons une image ou réagissons à un stimulus, des milliards de neurones s’activent selon des schémas spécifiques. Or, ces schémas varient d’un individu à l’autre, un peu comme une signature invisible. L’objectif est donc de transformer cette activité cérébrale en identifiant biométrique.

    Concrètement, cette technologie utilise des capteurs capables d’enregistrer des signaux cérébraux, souvent via des électroencéphalogrammes, ou EEG. L’utilisateur porte un casque ou un dispositif léger qui capte les ondes émises par son cerveau pendant qu’il effectue une tâche simple : regarder une forme, écouter un son, ou se concentrer sur une image. Ces données sont ensuite analysées par des algorithmes d’intelligence artificielle, qui extraient des caractéristiques stables propres à chaque personne.

    C’est précisément l’approche développée par la start-up française Yneuro avec son système Neuro ID, présenté comme la première solution d’authentification biométrique fondée sur l’activité cérébrale. L’ambition est claire : proposer une alternative aux méthodes actuelles comme les empreintes digitales, la reconnaissance faciale ou l’iris.

    Pourquoi chercher à dépasser ces technologies déjà très répandues ? Parce qu’elles ont des failles. Un visage peut être copié à partir d’une photo, une empreinte digitale peut être reproduite, et les bases de données biométriques peuvent être piratées. Le cerveau, lui, est beaucoup plus difficile à imiter. Les signaux neuronaux sont dynamiques, complexes, et quasiment impossibles à deviner sans être physiquement la personne concernée.

    Autre avantage majeur : l’identification neuronale pourrait permettre une authentification dite « vivante ». Autrement dit, le système ne vérifie pas seulement une caractéristique statique, mais une activité cérébrale en temps réel, ce qui réduit fortement les risques d’usurpation.

    Pour autant, cette technologie ne rendra pas immédiatement obsolètes les méthodes actuelles. Les capteurs doivent encore être miniaturisés, rendus confortables et peu coûteux. Des questions éthiques majeures se posent aussi : que devient la confidentialité des données cérébrales ? Qui les stocke ? Et dans quel but ?

    L’identification neuronale ouvre donc une nouvelle ère de la biométrie. Une ère fascinante, prometteuse… mais qui exigera des garde-fous solides. Car pour la première fois, ce n’est plus notre corps que l’on utilise comme clé d’accès, mais l’intimité même de notre activité mentale.
    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
  • Choses à Savoir SCIENCES

    Quel est le premier médicament conçu par l'IA ?

    29/1/2026 | 2min
    Depuis quelques années, on nous promet que l’intelligence artificielle va révolutionner la médecine. Mais jusqu’ici, l’IA restait surtout un outil : pour analyser des images médicales, repérer des cancers, lire des dossiers… Aujourd’hui, un cap est en train d’être franchi : un médicament conçu grâce à de l’IA pourrait devenir le premier traitement commercialisé issu d’un processus de découverte “end-to-end” par IA.

    Son nom : rentosertib.

    Rentosertib, auparavant connu sous le code ISM001-055, est développé par la société de biotechnologie Insilico Medicine. Il cible une maladie grave et encore largement incurable : la fibrose pulmonaire idiopathique, ou IPF. C’est une pathologie où le tissu des poumons se transforme progressivement en “cicatrice”, ce qui réduit l’oxygénation et conduit souvent à une insuffisance respiratoire. Les traitements actuels ne guérissent pas : ils ralentissent simplement la progression.

    Ce qui rend rentosertib unique, c’est son histoire. D’après les informations publiées ces dernières années, l’IA n’a pas servi uniquement à “accélérer” des étapes. Elle aurait été utilisée pour identifier une cible biologique prometteuse (une protéine impliquée dans la maladie), puis pour concevoir chimiquement une molécule capable de l’inhiber. Ici, la cible est une enzyme appelée TNIK. L’algorithme a analysé des masses de données scientifiques, repéré un signal biologique cohérent, puis généré et optimisé des structures moléculaires jusqu’à obtenir un candidat médicament.

    Rentosertib a déjà franchi des étapes cruciales : des essais initiaux chez l’humain ont montré un profil de sécurité acceptable, puis une étude de phase 2a a donné des signaux encourageants sur l’amélioration ou la stabilisation de certains indicateurs respiratoires après quelques semaines de traitement.

    Et maintenant, l’enjeu est énorme : la phase 3. C’est la dernière marche avant une éventuelle autorisation de mise sur le marché : un essai long, sur beaucoup de patients, comparant le médicament à un placebo ou au traitement standard. C’est aussi l’étape où la majorité des molécules échouent.

    Si rentosertib réussit cette phase, il pourrait être le premier médicament réellement “conçu par IA” à arriver en pharmacie — potentiellement avant 2030. Ce ne serait pas seulement une victoire médicale : ce serait la preuve que l’IA peut, concrètement, inventer des traitements plus vite… et peut-être mieux, contre des maladies aujourd’hui sans vraie solution.
    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Mais podcasts de Ciência

Sobre Choses à Savoir SCIENCES

Développez facilement votre culture scientifique grâce à un podcast quotidien ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Site de podcast

Ouça Choses à Savoir SCIENCES, InfectoCast e muitos outros podcasts de todo o mundo com o aplicativo o radio.net

Obtenha o aplicativo gratuito radio.net

  • Guardar rádios e podcasts favoritos
  • Transmissão via Wi-Fi ou Bluetooth
  • Carplay & Android Audo compatìvel
  • E ainda mais funções

Choses à Savoir SCIENCES: Podcast do grupo

  • Podcast Real Life French
    Real Life French
    Ensino, Aprendizagem de idiomas
Informação legal
Aplicações
Social
v8.4.0 | © 2007-2026 radio.de GmbH
Generated: 2/4/2026 - 4:32:37 PM